ÇENELERDE GÖRÜLEN PERİFERAL DEV HÜCRELİ GRANÜLOMALAR İLE PERİFERAL OSSİFIYE FİBROMALARIN STROMAL İNFLAMATUAR SİTOKİN EKSPRESYONLARININ İMMÜNOHİSTOKİMYASAL OLARAK DEĞERLENDİRİLMESİ

Ömer EKİÇİ

Ağız, Diş ve Çene Cerrahisi Anabilim Dalı
Uzmanlık Tezi

Tez Danışmanı
Prof. Dr. Sinan AY

ESKİŞEHİR
2016
ÇENELEDİ GÖRÜLEN PERİFERAL DEV HÜCRELİ GRANÜLOMALAR İLE PERİFERAL OSSİFIYE FİBROMALARIN STROMAL İNFLAMATUAR SİTOKİN EKSPRESYONLARININ İMMÜNOHİSTOKİMYASAL OLARAK DEĞERLENDİRİLMESİ

Ömer EKİCİ

Ağız, Diş ve Çene Cerrahisi Anabilim Dalı
Uzmanlık Tezi

Tez Danışmanı
Prof. Dr. Sinan AY

‘Bu tez, Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından 2015-769 proje numarası ile desteklenmiştir.’

ESKİŞEHİR
2016
T.C.
ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ
DİŞ HEKİMLİĞİ FAKÜLTESİ
AĞIZ, DİŞ VE ÇENE CERRAHİSİSANABİLİMLİM DALI

ÇENELERDE GÖRÜLEN PERİFERAL DEV HÜCRELİ GRANÜLOMALAR İLE PERİFERAL OSSİFIYE FİBROMALARIN STROMAL İNFLAMATUAR SİTOKİN EKSPRESYONLARININ İMMÜNOHİSTOKİMYASAL OLARAK DEĞERLENDİRİLMESİ

Ömer EKİÇİ

Tez Savunma Tarihi : 01.12.2016

Tez Danışmanı : Prof. Dr. Sinan AY (Eskişehir Osmangazi Üniversitesi, Diş Hekimliği Fakültesi, ADÇ. Cerrahisi AD.)

Jüri Üyesi : Yrd. Doç. Dr. Ömür DERECİ (Eskişehir Osmangazi Üniversitesi, Diş Hekimliği Fakültesi, ADÇ. Cerrahisi AD.)

Onay
Bu çalışma yukarıdaki jüri tarafından Uzmanlık Tezi olarak kabul edilmiştir.

Prof. Dr. İhvan Ünlüoğlu
Dekanlık Meclisi

Uzmanlık Tezi
ESKİŞEHİR - 2016
UZMANLIK TEZİ BEYAN NAMESİ

Uzmanlık tezi olarak sunduğum “ÇENELERDİ GÖRÜLEN PERİFERAL DEV HÜCRELİ GRANÜLOMALAR İLE PERİFERAL OSSIDİYE FİBROMALARIN STROMAL İNFLAMATUAR SİTOKİN EKSPRESYONLARININ İMMÜNOHİSTOKİMYASAL OLARAK DEĞERLENDİRİLMESİ” başlıklı araştırmayı danışmanım Prof. Dr. Sinan AY'ın rehberlik ve sorumluluğunda tamamladığımı; çalışma protokolü ve süresince bilimsel araştırma ve etik kurallara uygun davranışımı, verilerin tarafımдан toplandığımı, örneklerin tarafımca hazırlanıdığını; deney, analiz ve görüntüleme işlemlerinin ilgili laboratuvar ve görüntüleme merkezinde tarafımca yapıldığımı/yaptrıldığımı, tez metnini hazırlarken kaynakçanın eksiksiz olarak gösterildiğini, tezin yazım kılavuzu kurallarına uygun olarak hazırlanığini ve belirtilen hususların aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiği beyan ederim.

Ömer EKİCİ
İÇİNDEKİLER

TEŞEKKÜR .. iii
ÖZET ... iv
ABSTRACT .. v
SİMGELE R VE KISALTMALAR DİZİNİ .. vi
ŞEKİLLER DİZİNİ ... vii
TABLOLAR DİZİNİ .. x
1. GİRİŞ ... 1
2. GENEL BİLGİLER ... 6
 2.1. Çenelerde Görülen Periferal Dev Hücreli Granülosma ve Periferal Ossifiye Fibromalar .. 6
 2.1.1. Periferal Dev Hücreli Granülosmalar ... 6
 2.1.2. Periferal Ossifiye Fibromalar ... 9
 2.2. Pro-inflamatuar Sitokinler ... 11
 2.2.1. İnterlökin-1 (IL-1) ... 13
 2.2.2. İnterlökin 6 (IL-6) ... 15
 2.2.3. Tümör Nekrozis Faktör-alfa (TNF-α) ... 17
 2.2.4. İnterlökin 17 (IL-17) ... 19
 2.3. PDHG ve POF Lezyonlarının Histopatogenezi .. 22
 2.3.1. PDHG ve POF’un Patogenezi ve Muhtemel Mekanizmalar 22
 2.3.2. PDHG ve POF’un Patogenezinde Sitokinlerle Birlikte Rol Alan Medyatörler 26
 3. MATERYAL VE METOT .. 33
 3.1. Çalışma Grubu .. 33
3.2. Örneklerin Toplanması ..33
3. 3. İmmünohistokimyasal İnceleme ...34
3.3.1. İmmünohistokimyasal Boyama ..34
3.3.2. İmmünreaktivitenin Değerlendirilmesi ...35
3.4. İstatistiksel Analiz ..36

4. BULGULAR ...37
4.1. Klinik Bulgular ..37
4.1.1. Periferal Dev Hücreli Granüloma Olgularının Klinik Özellikleri37
3.1.2. Periferal Ossifiye Fibroma Olgularının Klinik Özellikleri ...39
4.2. Histolojik Bulgular ..41
4.2.1. PDHG ve POF Olgularının Ortalama Immunoreaktivite Skorları41
4.2.2. PDHG Olgularında Çok Çekirdekli Dev Hücreler ve İşği Stromal Hücrelerde Inflamatuar Sitokin Ekspresyonu ..42
4.2.3. PDHG ve POF Olgularında Stromal Hücrelerde İnflamatuar Sitokin Ekspresyonu........47

5. TARTIŞMA ..53

6. SONUÇ VE ÖNERİLER ...65

KAYNAKLAR ..67

EKLER ..88

EK1. ÖZGEÇMİŞ ..88

EK2. ETİK KURUL ONAY FORMU ..89
TEŞEKKÜR

Uzmanlık eğitimi ve tez çalışmalardımda her zaman bana yol gösteren Ağız, Diş ve Çene Cerrahisi Anabilim Dalı öğretim üyesi değerli hocam Yrd. Doç. Dr. Ömür DERECİ'ye,

Tezimin histopatolojik incelemelerinde tüm imkânlarını sunan ve yardımlarını hiç esirgemeyen hocalarım Eskişehir Osmangazi Üniversitesi, Tıp Fakültesi, Patoloji Anabilim Dalı Başkanı Sayın Prof. Dr. Özgül PAŞAOĞLU'na ve Sayın Prof. Dr. Mustafa Fuat AÇIKALIN'a,

Tezimin istatistiksel analiz kısmında yardımcı olan Eskişehir Osmangazi Üniversitesi, Tıp Fakültesi, Biyoistatistik Anabilim Dalı Arş. Gör. Merve SEVİNÇ'e,

Ağız, Diş ve Çene Cerrahisi Anabilim Dalındaki asistan arkadaşlarına, hemşirelerimize ve personelimize,

Tez çalışmama maddi destek veren Eskişehir Osmangazi Üniversitesi Rektörlüğü, Bilimsel Araştırmalar Projesi (BAP) Koordinatörüne,

Uzmanlık eğitimi süresince en zor günlerimde her zaman yanında olan aileme ve kardeşimse sonsuz teşekkürlerimi borç biririm.

Ömer EKİCİ
ÖZET

Çenelerde Görülen Periferal Dev Hücreli Granülomalar ile Periferal Ossifiye Fibromaların Stromal İnflamatuar Sitokin Ekspresyonlarının İmmünohistokimyasal Olarak Değerlendirilmesi

Amaç: Bu çalışmanın amacı PDHG ve POF lezyonlarında IL-1, IL-6, IL-17 ve TNF-α sitokin ekspresyonlarının immünohistokimyasal olarak incelenmesi ve aralarında fark olup olmadığını araştırılmasıdır.

Bulgular: Çalışma bulgularına göre PDHG lezyonlarında dev hücrelerde stromal hücrelere göre IL-6 ve TNF-α düzeyleri daha yüksek bulunmuştur. PDHG ile POF olguları karşılaştırıldığında ise IL-1 ve IL-6 ekspresyonu bakımından her iki lezyon arasında anlamli düzeyde bir farklılık olmadığı, TNF-α ekspresyonunun PDHG lezyonlarında, IL-17 ekspresyonunun ise POF lezyonlarında daha yüksek olduğu görülmuştur.

Sonuç: Bu çalışma sonuçları IL-1, IL-6, IL-17 ve TNF-α'nın hem PDHG hem de POF lezyonlarının etyopatogenezlerinde rol oynamadıklarını göstermekte ve bu lezyonların gelişiminde proinflamatuar sitokinlerin pozitif sinerjik rolünü ortaya koymaktadır.

Anahtar Kelimeler: İmmünohistokimya, İnflamatuar sitokin, Periferal dev hücreli granüloma, Periferal ossifiye fibroma.
ABSTRACT

Immunohistochemical Evaluation of the Expression of Stromal Inflammatory Cytokines in Peripheral Ossifying Fibromas and Peripheral Giant Cell Granulomas of the Jaws

Aim: The objective of this study is to immunohistochemically examine IL-1, IL-6, IL-17 and TNF-α cytokine expressions in PDHG and POF lesions as well as to detect whether there is a difference among them, or not.

Material and Methods: This retrospectively conducted study includes 20 peripheral ossifying fibromas and 20 peripheral giant cell granuloma patients, who were treated in the Department of Oral and Maxillofacial Surgery of the Faculty of Dentistry in Eskişehir Osmangazi University and whose pathological examinations were performed at the Department of Pathology of the Faculty of Medicine in Eskişehir Osmangazi University in the years between 2013 and 2015. IL-1, IL-6, IL-17 and TNF-α antibodies were immunohistochemically examined in the preparates obtained from the biopsies taken from the lesions of these patients.

Results: According to the findings of this research, in the giant cells in PDHG lesions the amount of IL-6 and TNF-α expressions was found higher than that in stromal cells. Comparing the facts of PDHG to those of POF, it was observed that there was not a significant difference between two lesions in terms of IL-1 and IL-6 expressions; the amount of TNF-α expression was significantly higher in PDHG lesions and the amount of IL-17 expression was significantly higher in POF lesions.

Conclusion: The results of this study indicate that IL-1, IL-6, IL-17 and TNF-α are involved in the etiopathogenezis of both PDHG and POF lesions and reveals the positive synergic role of proinflammatory cytokines in the growth of these lesions.

Key Words: Immunohistochemistry, Inflammatory cytokine, Peripheral giant cell granuloma, Peripheral ossifying fibroma.
SİMGELER VE KISALTMALAR DİZİNİ

<table>
<thead>
<tr>
<th>Simgeler</th>
<th>Anlam</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>Adrenokortikotropik hormon</td>
</tr>
<tr>
<td>ark</td>
<td>Arkadaşları</td>
</tr>
<tr>
<td>BAP</td>
<td>Bilimsel araştırmalar projesi</td>
</tr>
<tr>
<td>bFGF</td>
<td>Temel fibroblast Büyüme faktörü</td>
</tr>
<tr>
<td>CCL20</td>
<td>Kemokin (C-C motif) ligand 20</td>
</tr>
<tr>
<td>COX</td>
<td>Siklooksijenaz</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktif protein</td>
</tr>
<tr>
<td>dh</td>
<td>Dev hücre</td>
</tr>
<tr>
<td>DHG</td>
<td>Dev hücreli granüloma</td>
</tr>
<tr>
<td>DHT</td>
<td>Dev hücreli tümör</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granülosit makrofaj koloni stimule edici faktör</td>
</tr>
<tr>
<td>HGFs</td>
<td>İnsan gingival fibroblastları</td>
</tr>
<tr>
<td>hPDLCs</td>
<td>İnsan periodONTAL ligament hücreleri</td>
</tr>
<tr>
<td>IFN</td>
<td>İnterferon</td>
</tr>
<tr>
<td>IL</td>
<td>İnterlökin</td>
</tr>
<tr>
<td>IRS</td>
<td>İmmünoreaktivite skoru</td>
</tr>
<tr>
<td>LIF</td>
<td>Lösemi inhibitör faktörü</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitojen aktive edici protein</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitojen aktive edici protein kinaz</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monosit kemotaktik protein 1</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Makrofaj koloni stimule edici faktör</td>
</tr>
<tr>
<td>MMP</td>
<td>Matriks metalloproteinaz</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matriks metalloproteinazlar</td>
</tr>
</tbody>
</table>
MVC: Mikrovasküler sayım
NFATc-1: Aktive edilmiş T hücre nükleer faktörü, sitoplazmik 1
NF-κB: Nükleer faktör kappa B
OPG: Osteoprotegerin
OSM: Onkostatin M
p38 MAPK: p38 mitojen ile aktive edilmiş protein kinaz
PDGF: Platelet kaynaklı büyüme faktörü
PDHG: Periferal dev hücreli granülooması
PDL: Periodontal ligament
PGE2: Prostoglandin E2
POF: Periferal ossifiye fibroma
PTH: Paratroid hormon
RA: Romatoid artrit
RANK: Nükleer faktör kappa B reseptör aktivatörü
RANKL: Nükleer faktör kappa B reseptör aktivatörü ligandı
SDHG: Santral dev hücreli granülooması
sh: Stromal hücre
s IL-6R: Çözünür interlökin-6 reseptörü
SOF: Santral ossifiye fibroma
TGF-β: Transforme edici büyüme faktörü beta
Th: T helper
TNF-α: Tümör nekroz faktörü alfa
TNFR1: Tümör nekroz faktör reseptörü 1
TRAF6: Faktör 6 ile ilişkili tümör nekroz faktör reseptörü
VEGF: Vasküler endotelyal büyüme faktörü
ŞEKİLлер dizİNİ

<table>
<thead>
<tr>
<th>Şekil No</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 2.1. Proinflamatuar sitokinler ve diğer medyatörlerin RANKL'ı etkileyerek kemik rezorbsiyonunu stimülasyonu ve inhibisyonu</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 4.1. Periferal dev hücreli granüloma olgusunda IL-1β ile dev hücreler ve stromal hücrelerde yaygın ve kuvvetli pozitiflik (x400)</td>
<td>43</td>
</tr>
<tr>
<td>Şekil 4.2. Periferal dev hücreli granüloma olgusunda IL-6 ile dev hücrelerde zayıf pozitiflik mevcut olup stromal hücreler negatifdir (x400)</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 4.3. Periferal dev hücreli granüloma olgusunda IL-17 ile dev hücrelerde ve stromal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon (x400)</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 4.4. Periferal dev hücreli granüloma olgusunda TNF-α ile dev hücrelerde zayıf-orta şiddete,stromal hücrelerin bir kısmında zayıf pozitiflik (x400)</td>
<td>46</td>
</tr>
<tr>
<td>Şekil 4.5. Periferal ossifiye fibroma olgusunda IL-1β ile mezenşimal hücrelerde yaygın ve kuvvetli ekspresyon (x400)</td>
<td>49</td>
</tr>
<tr>
<td>Şekil 4.6. Periferal ossifiye fibroma olgusunda IL-6 ile mezenşimal hücrelerin bir kısmında zayıf –orta şiddette pozitiflik (x400)</td>
<td>49</td>
</tr>
<tr>
<td>Şekil 4.7. Periferal ossifiye fibroma olgusunda IL-17 ile mezenşimal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon (x400)</td>
<td>50</td>
</tr>
<tr>
<td>Şekil 4.8. Periferal ossifiye fibroma olgusunda TNF-α ile seyrek mezenşimal hücrede zayıf ekspresyon (x400)</td>
<td>51</td>
</tr>
</tbody>
</table>
TABLOLAR DİZİNİ

<table>
<thead>
<tr>
<th>Tablo No</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 3.1. İmmünoreaktivite skoru hesaplaması için örnek tablo</td>
<td>36</td>
</tr>
<tr>
<td>Tablo 4.1. PDHG olgularının klinik bilgileri ve ön tanıları</td>
<td>38</td>
</tr>
<tr>
<td>Tablo 4.2. POF olgularının klinik bilgileri ve ön tanıları</td>
<td>40</td>
</tr>
<tr>
<td>Tablo 4.3. PDHG olgularının ortalama immünoreaktivite skorları</td>
<td>41</td>
</tr>
<tr>
<td>Tablo 4.4. POF olgularının ortalama immünoreaktivite skorları</td>
<td>42</td>
</tr>
<tr>
<td>Tablo 4.5. PDHG olgularında dev hücrelerde ve ışı stromal hücrelerde İRS medyan değerleri</td>
<td>44</td>
</tr>
<tr>
<td>Tablo 4.6. PDHG olgularında dev hücre ve ışı stromal hücre sitokin ekspresyonu Mann-Whitney U testi sonuçları</td>
<td>47</td>
</tr>
<tr>
<td>Tablo 4.7. PDGH ve POF olgularında ışı stromal hücreler IRS medyan değerleri</td>
<td>48</td>
</tr>
<tr>
<td>Tablo 4.8. PDHG ve POF olgularında stromal hücre sitokin ekspresyonu Mann-Whitney U testi sonuçları</td>
<td>51</td>
</tr>
</tbody>
</table>
1. GİRİŞ

PDGH ve POF lezyonlarının gelişiminin inflamatuar reaktif bir hiperplazi olması nedeniyle araştırmalar çoğunlukla bu lezyonlardaki inflamasyon olaylarına yönelmiştir. İnflamasyon vücudun savunma mekanizmasıdır ve organizma inflamasyona neden olan etkeni yok etmeye, ortamdan uzaklaştırmaya yada sınırlamaya çalışarak hasar gören dokuyu tamir etmeye çalışanıdır. Fakat artmış reaktif inflamatuar yanıt komplikasyon olarak organ ve dokularda yetmezliğe, bozulmalara da aşırı büyümelere neden olabilmektedir. İnflamasyon vasküller ve hücresel yanıtları içerir ve bu yanıtın oluşmasına birçok kimiyal medyatör rol alır. İnflamasyonda rolü olan bu moleküllerden biri de sitokinler olup bazıları pro-inflamatuar, bazıları da anti-inflamatuar olarak etki gösterirler.
Pro-inflamatuar sitokinlerin en önemlileri IL-1β, IL-6 ve tümör nekroz faktörü-alfa (tümör nekrozis faktör alfa-TNF-α)’dır. TNF-α, IL-6 ve IL-1β’ nin osteolitik lezyonlarda ve patolojik kemik rezorbsiyonlarındaki rolü kanıtlanmıştır.8-10,13,14 Bu sitokinler, uzun kemiklerin dev hücreli tümörlerinde in-vivo ve in-vitro bazı çalışmalar ile çeşitli metotlar kullanılarak araştırılmıştır.9 TNF-α ekspresyonu aynı zamanda çenelerinde dev hücreli tümör bulunan hastalarda çalışılmıştır. De Souza ve ark.10 çenelerinde santral dev hücreli lezyon bulunan hastaların dolasındaki lenfosit ve monositlerinde TNF-α ekspresyonunu araştırdıkları çalışmalarda TNF-α ekspresyonunun CD4 T hücrelerinde arttığını, CD68 monositlerde azaldığını bulmuşlardır.

2010 yılından sonra çenelerde görülen dev hücreli granülomalarda inflamatuar sitokin ekspresyonunu araştırmaya yönelik yapılan çalışmalar giderek artmaya başlamıştır. Amaral ve ark.11 çenelerde görülen 5 periferal, 5 santral ve 1 cherubizm vakasında TNF-α ve aktive edilmiş T hücre nükleer faktörü, sitoplazmik 1 (nuclear factor of activated T cells-NFATc1) ekspresyonunu araştırdıkları çalışmada çenelerde görülen bu lezyonlarda osteoklastların terminal farklılaşması için temel yazılım olan NFATc1 transkripsiyonunun arttığını ortaya koymuşlardır. Yine aynı yıl Syrio ve ark.12 çenelerde 7’si periferal ve 6’sı santral olmak üzere 13 dev hücreli lezyonda anti-inflamatuar özellik gösteren IL-10’un ekspresyonunu araştırdıkları çalışmada IL-10’un oral dev hücreli granülomaların gelişimi ile ilişkili patolojik süreçleri inhibe ettiği görülmüştür. 2012 yılında Matos ve ark.13 çenelerde 20 periferal ve 20 santral dev hücreli lezyonda TNF-α ve transforme edici büyüme faktörü-beta (transforming growth factor beta-TGF-β) ekspresyonu ile ilgili yaptıkları çalışma dev hücreli lezyonlarda TGF-β ile TNF-α’nın karşılıklı etkileşimlerinin osteoklastogenezis ve kemik rezorbsiyonunda önemli olabileceğini göstermişlerdir. Yine aynı yıl Papanicolaou ve
ark.

Daha büyük bir çalışma grubunda çenelerin periferal ve santral dev hücreli lezyonlarında çok çekirdekli dev hücreler ile stromal işi hücrelerde ilk kez IL-1β, IL-6 ve TNF-α ekspresyonunu ortaya koymuşlardır. Onların yaptığı çalışmada TNF-α, IL-6 ve IL-1β ekspresyonu çenelerin periferal ve santral dev hücreli tümörlerinde immünohistokimyasal olarak incelenmiş hem periferal hem de santral dev hücreli granülomalarda TNF-α, IL-6 ve IL-1β ekspresyonu dev hücrelerde stromal hücrelere göre önemli şekilde yüksek bulunmuştur. Yapılan tüm bu çalışmalar periferal dev hücreli lezyonların gelişimindeki patolojik süreçlerde pro-inflamatuar sitokinlerin varlığını ve rolünü göstermiştir. PDHG ile benzer etyopatogeneze sahip POF lezyonlarında pro-inflamatuar sitokinlerin ekspresyonu ile ilgili literatürde herhangi bir çalışmaya rastlanmamıştır. Bu çalışma çenelerde görülen POF lezyonlarında pro-inflamatuar sitokinlerin ekspresyonunu araştıran ilk çalışma olması bakımından önemlidir.

PDHG ve POF lezyonları periodontal ligamentten köken alan lezyonlardır ve bu lezyonların etiyolojisinde periodontal inflamasyon esas rolü oynamaktadır. Son dönemde periodontal inflamasyonda rol oynayan IL-17 ile ilgili çok önemli çalışmalar yapılmıştır. IL-17 başlığa T helper 17 (Th17) hücrelerden salgılanan ve periodontitisin patogenezinde rolü kanıtlanan pro-inflamatuar bir sitokindir. IL-17 seviyeleri periodontitisli hastaların serum, tükrük ve dişeti oluğu sıvısında yüksek bulunmuştur. IL-17A serum düzeyi agresif periodontitisli hastalarda klinik olarak atasman kaybı ile ilişkili olarak gösterilmiştir.15 Periodontal tedaviden sonra hem dişeti oluğunda hemde serumda IL-17A düzeyi önemli ölçüde azalmıştır.16 IL-17' nin aynı zamanda kemik rezorbsiyonunda da önemli rol oynadığı görülmüştür. IL-17' nin IL-6' yı indükleyerek insan periodontal ligament hücrelerinin üretimini ve osteogenezisi stimüle ettiği görülmüştür. Danping Lin ve ark.17 yaptıkları çalışma IL-17' nin insan periodontal
ligamentlerinde nükleer faktör kappa B reseptör aktivatörülü ligandı (receptor activator for nuclear factor κB ligand-RANKL) ekspresyonunu artırdığını, osteoprotegerin (OPG) ekspresyonunu azalttığını göstermişlerdir. Yan Wu ve ark. 18 yaptıkları çalışmada IL-17A'nın varlığında insan periodontal ligament fibroblastlarının göçü önemli derecede arttığı görülmüştür. Beklen ve ark. 19’nun çalışmasında IL-17'nin sinovyal fibroblastlarda ve gingival fibroblastlarla IL-6 ve IL-8 sekresyonunu stimulate ettiği görülmüştür. IL-17 aynı zamanda sinovyal fibroblastlarla matriks metalloproteazların (MMPs) üretimini uyarmakta ve böylece periodontal ligamentlerde ekstrasellüler matriksin bozulmasını artıramaktadır.

Periodontal ligamente ve diğer periodontal dokularda varlığı ve rolü birçok çalışma ile gösterilen IL-17'nin çenelerde görülen PDHG ve POF lezyonlarında ekspresyonunun immünohistokimyasal olarak ortaya konulması bu lezonların patogenezinde bu sitokinin rolünün ve muhtemel mekanizmaların aydınlatılmasına katkı sağlayacaktır.

Bu çalışmanın amacı PDHG ve POF lezyonlarında IL-1, IL-6, IL-17 ve TNF-α sitokin ekspresyonlarının immünohistokimyasal olarak incelenmesi ve aralarında fark olup olmadığını araştırılmasıdır. Bu çalışmada elde edilecek sonuçların PDHG ve POF lezyonlarının etyopotogenezinin aydınlatılmasına ve böylelikle bu lezonların tedavisinde yeni ilaçların ve yöntemlerin geliştirilmesine katkı sunması beklenilmektedir.
2. GENEL BİLGİLER

2.1. Çenelerde Görülen Periferal Dev Hücreli Granüloma ve Periferal Ossifiye Fibromalar

Periferal dev hücreli granüloma (PDHG) ve periferal ossifiye fibromalar (POF) çoğunlukla dişetinde ortaya çıkan oral kavitenin reaktif inflamatuar hiperplazileridir. Bu lezyonlar genelde periost ya da periodontal ligamentle ilişkili olup, kötü ağız hijyeni ve kronik irritasyon zemininde ortaya çıkarlar. Her iki lezyonda neoplastik özellikten çok reaktif özellik gösterir.

2.1.1. Periferal Dev Hücreli Granülomalar

Dev hücreli granülomalar (DHG) travma ve infilamasyon sonrasında oluşan non-neoplastik lokal hiperplastik lezyonlardır. DHG periost, bağ dokusu ya da periodontal ligament kökenli bir lezyon olup, dişetin dokusunun zedelenmeye karşı verdiği reperatif bağ doku cevabıdır. DHG ilk olarak 1953 yılında Jaffe tarafından çene kemiklerinin dev hücreli reperatif granülomu olarak tanımlanmıştır. Jaffe çenelerin DHG' unu uzun kemiklerin dev hücreli tümörlerinden (DHT) klinik ve histolojik davranışlarının farklılığı temelinde ayırmış, DHG' un bir neoplazm olmadığını, daha ziyade yaralanmalara karşı reaktif bir cevap olduğunu göstermiş ve bu yüzden de "dev hücreli reperatif granüloma" terimini kullanmıştır.

DHG'lar periferal ve santral olarak sınıflandırılabilir. Santral dev hücreli granülomalar (SDHG) kemik içi yerleşimli iken, periferal dev hücreli granülomalar (PDHG) alveol kreti çevresinde ve dişetinde periferal yerleşimli olarak görülür.
PDHG oral dokularda sınırlı, tümör benzeri gingival-mukozaal büyüme şeklinde gözlenir. PDHG daha çok 40-60 yaşları arasında, daha sık olarak kadınlarda ve maksilladan ziyade mandibulada görülme eğilimindedir. PDHG ağrızda dişeti ve alveolar kretin periostundan köken alarak gelişme göstermektedir.

PDHG’ nin klinik görünümü genelde küçük, sınırlı, koyu kırmızı renkli, karaciğer dokusuna benzeyen bir odağa sahip, saplı veya sapsız olabilen, dişeti ve alveol kreti üzerinde yerleşmiş, ağrısız ve kanamalı bir lezyon şeklindedir. yüzeyi mor-kırmızı renkte mukoza ile örtülüdür ve ülsere olabilir. Birlikte olduğu dişlerde yer değişimine ve sallanmaya neden olabilir. Dişiz alveollerde ise altındaki kemik dokusunda kavite tarzında çöküntü görülebilir. Bazen alttaki kemiğe yüzeysel rezorbsiyona neden olabilir. Lezyonlar genellikle asemptomatiktir ve hastalar travma ile birlikte dişetinde kanama ve ağrı şikayeti ile başvurur. PDHG’ ler makroskopik olarak genellikle 0.5-1.5 cm çapta lezyonlardır. Kfir ve ark. PDHG lezyonlarının %94’ünün 1.5 cm’den küçük olduğunu belirtmişlerdir. Literatürde 5 cm’den büyük PDHG vakası bildirilmiştir. Lezyonların büyük boyutlara ulaşmasına kronik travmaya uzun süreli maruz kalması ve kötü oral hijyenin neden olduğu düşünülmektedir.
PDHG’ lerin radyografik bulguları non spesifiktir, nadiren bazı vakalarda radyografide kemikte yüzeysel erozyon görülebilir.

Çok çekirdekli dev hücreler fibroblastik stroma boyunca hakim olan hücrelerdir ve sıklıkla hemoraji alanlarına lokalize olmuşlardır. Dev hücreler mononükleer makrofajların bir alt ünitesinden köken almaktadırlar. Bu mononükleer prekürsör hücreler osteoblast benzeri işi şekilli hücrelerin çoğalmasının etkisi altında olgun dev hücrelere farklılaşırlar.

2.1.2. Periferal Ossifiye Fibromalar

Periferal ossifiye fibromalar (POF) kemik, sement benzeri materyal ve distrofik kalsifikasyonlar gibi bir veya daha fazla mineralize doku içerebilen hücresel fibroblastik dokudan oluşmuş gingival büyümelerdir. POF neoplastik karakterden çok reaktif özellikler taşıyan, iyi huylu, yavaş büyuyen, lokalize bir fibroosseöz lezyondur.

Ossifiye fibromalardan santral ossifiye fibroma (SOF) endosteumdan köken alıp kemik içindeki medullar alanda genişlerken, POF periodontal ligament hücrelerinden köken alır. Bu patolojinin ilk tanımlanması 1844 yılında Shepherd ve ark. tarafından alveolar ekzostoz olarak yapılmıştır; daha sonra 1972 de Eversol ve Rovin "periferal ossifiye fibroma" terimini önermiştir.

POF’ un etiyolojisi tam anlaşılmamamıştır. Bu alandaki çalışmalarsonucunda iki teori ileri sürülmüştür: İlk teori, bu lezyonun pyojenik granülongun kalsifikasyonuyla oluştuğudur. İkinci teoriye göre ise, periodontal ligament hücrelerindeki inflamatuar
hiperplaziden köken almakta.

POF'ın gingival ve periodontal ligamentle yakın ilişkide olarak ortaya çıkması nedeniyle ikinci teori oldukça yaygın şekilde kabul görmüştür. Üstelik POF kalsifiye zengin oksitalan matriks lifleri içermesi de bunun kanıtıdır. POF'daki inflamatuar reaksiyon plak ve dental restorasyonlar gibi irritasyon faktörleri tarafından neden olan lokal travmalar nedeniyle sekonder olarak da olur. Periostun ve periodontal ligamentin kronik irritasyonu bağ dokusunda metaplaziye neden olur, bu da kemik formsayonu ve distrofik kalsifikasyonla sonuçlanır.

Klinik olarak POF iyi sınırlı yavaş büyüyen 2 cm' in altında gingival kitledir ve interdental papil bölgese yerleştirilmiş olarak görürlü."Tabanı saplı ya da sapsız olabilir, rengi gingiva renginde ya da daha açık renkte, yüzeyi ülserasyon göstererek. Bazı vakalarda diş migrasyonu ve interdental kemik yıkımı rapor edilmiştir. POF için literatürde 6 cm ve 9 cm çapında lezyonlar kaydedilmesine rağmen genellikle 1.5 cm' den küçük çaptadır. POF vakalarının %60' tan fazla maksiller kemikte, bunların %50' si de ön bölgededir. Her yaşta görülebilen bu lezyon sıkılaşık genç erişkinlerde, 2. ve 3. dekata ve daha çok kadınlarda ortaya çıkar. Kadınlarda, erkeklerde göre yaklaşık 2-4 kat daha fazla görülür ve genellikle 25-35 yaşlar arasında rastlanır.

POF vakaların büyük çoğunlukta röntgende alttaki kemikte gözle görülür bir belirti yoktur. Bununla birlikte ender olarak kemikte yüzeysel bir erozyon görülebilir. Ayrıca POF' a bağlı diş migrasyonu ihtimali rapor edilmiştir.

Histopatolojik olarak lezyon stratifiye squamoz epitelle kaplı, fibroblastlar, fibrositler, fibriller stroma ve bazı vakalarda çok çekirdekli dev hücrelerin bulunduğu mineralize alanlardan oluşmuş aşırı hücresel bağ dokusu kitel şeklinde kendini gösterir. Mineralizasyon kemik, sement benzeri materyal ve distrofik kalsifikasyondan oluşabilir. Distrofik kalsifikasyon ülserle lezyonlarda erken dönemde görülebilir, oysa daha eski ve
olgun ülser olmayan lezyonlarda iyi şekillenmiş kemik ve sement benzeri materyal görülür.⁵

Lezyon klinik ve histolojik olarak en çok periferal dev hücreli granüloma ve pyojenik granülomaya benzer. Ayrıca makroskopik görünümü, irritasyon fibromu ve periferal yerleşimli odontojenik tümörler ile karşılaştırılabilir.²⁵ POF’ un kesin tanısı biyopsi örneğinin histolojik değerlendirilmesi ile yapılır.

POF’ un tedavi seçimi hem periodontal ligamenti hem de etkilenmiş periostal komponenti içerecek şekilde periferal ve derin kenarlarla birlikte lokal rezeksiyondur. Ilave olarak bakteriyel plak ve diş taşı gibi lokal etyolojik faktörlerin elimine edilmesi gerekir.⁴⁴ Dental migrasyondan sekonder kemik rezorbsiyonuna kadar vakalar rapor edilmesine rağmen POF’ la ilişkili dışler genel olarak mobil değildir. Komşu dişin çekimi genellikle gerekli olarak düşünülmez.³⁹

POF’ un rekürrens oranı reaktif lezyon olduğu için yüksektir. Rekürrens oranının %8.9’dan %20’lere kadar değişiklik gösterdiği rapor edilmiştir.⁴⁵ Başlangıçta çıkarılması nedeniyle tekrarlanan yaralanmalar ve lokal irritasyonun varlığı başlıca rekürrens nedenleridir. İlk rekürrens için ortalama zaman aralığı 12 aydır.⁴⁵

2.2. Pro-inflamatuar Sitokinler

Çeşitli hücre tipleri tarafından üretilen ve salgılanan polipeptider olan sitokinler, inflamasyon, hücre büyümesi, iyileşmesi ve yaralanmaya karşı sistemik yanıt da içine alan bağımsızlık ve inflamatuar olayları düzenlerler. Sitokinler hormona benzemekle birlikte tam olarak hormon da değildirler.⁴⁶ Lenfositlerin meydana getirdiği sitokinlere lenfokin, monositlerin meydana getirdiği sitokinlere ise monokin denir.
Sitokinler hücre bölünmesi ve farklılaşmasının kontrolü, hematopoez ve bağışıklık sisteminin düzenlenmesi, yaraların iyileşmesi, kemik formasyonu ve hücresel metabolizmanın değiştirilmesi gibi biyolojik olaylarda rol oynamaktadır.\[47\]

Sitokinlerin hedef hücreleri salındıkları hücre (otokrin etki), yakındaki hücre (parakrin etki) veya dolaşma girmiş sitokinlerle uyarılan uzaktaki bir hücredir (endokrin etki). Sitokinler genellikle depo edilmezler ve üretimleri yeni gen transkripsiyonuya başlatılır.\[48\] Sitokinler birçok farklı hücre tiplerine etki ederler. Bu özelliğe "pleiotropizm" denir. Sitokinlerin aynı hedef hücrede farklı birçok etkileri vardır. Sitokin etkinliği genellikle gerektiğinden fazladır. Sitokinler genellikle diğer sitokinlerin fonksiyonlarını etkilerler. İki sitokin birbirini antagonize eder veya additif etki gösterebilir ya da bazı durumlarda sinerjik etki gösterebilirler.\[49\]

Lökositler arasındaki haberleşmeyi düzenlemekte görev yapan monositler, doku makrofajları ve lenfositler tarafından üretilen moleküllere 1979 yılında İsviçre’de yapılan II. Uluslararası Lenfokin kongresinde “İnterlökin” adı verilmiştir.\[50\]

Sitokinlerin sınıflaması, gösterdikleri biyolojik etkinlikle ilişkilendirdiği için karışıklık yaratıcı olabilir. Sınıflamada standartizasyona rağmen daha önce saptanmış sitokinlerin isimleri yerleştiği için değiştirilmiştir. Benzer moleküle sahip iki ana grup olduğu söylenebilir. Bunlar pro-inflamatuar ve anti-inflamatuar sitokinlerdir.\[51\]

İnflamasyon yapan enfeksiyon hastalıkları, otoimmün hastalıklar, tümoral, vasküler hastalıklar ve travma gibi nedenlere bağlı olarak ortaya çıkan doku hastalıklarının makrofajları uyarması bu hücrelerden IL-1, IL-6 ve TNF-α gibi pro-inflamatuar sitokinlerin sentezlenip salınmasına neden olur.\[52\]
2.2.1. **İnterlökin-1 (IL-1)**

İnterlökin-1 (IL-1) iki farklı proteinden meydana gelmektedir ve bu proteinler IL-1α ve IL-1β' dir. İlk kromozom üzerinde iki ayrı gen tarafından meydana getirilen IL-1α ve IL-1β' nin antijenik yapıları farklı olmasına rağmen biyolojik aktiviteleri ve etkinlikleri aynıdır. Monositler hem IL-1α hem de IL-1β yapmalarına rağmen daha çok IL-1β yaparlar, buna karşılık keratinositler daha çok IL-1α yaparlar.53

IL-1 organizmada hemen hemen bütün hücreler tarafından yapılmakla birlikte daha çok makrofajlar, keratinositler, endotel hücreleri, düz kas hücreleri, dendritik hücreler, fibroblastlar ve nötrofillerde yapılmaktadır. T lenfositlerini uyaran ajanlar aynı zamanda makrofajları da uyarak IL-1 oluşmasına neden olabilirler.54

IL-1 hücreler üzerinde daha çok koruyucu etkiye sahiptir ve bu etki kemik üzerinde daha belirgindir. IL-1 T hücrelerinden IL-2 salgılanmasını ve bu hücrelerin yüzeyinde IL-2 reseptörlerinin sayısını artırmak için T hücrelerinin çoğalmasını sağlar. IL-1 antijen sunan hücrelerin kapasitesini artırır; B lenfositleri üzerindeki etkileri ile B lenfositlerinin proliferasyonunu, immünoglobulin sentezini ve hücre yüzeyinde immünoglobulin reseptörlerinin sayısını artırmaktadır. IL-1 lokal nötrofil infiltrasyonuna, geçiş tipi hücresel hassasiyete, fibroplazi ve anjiyogenez ise neden olur.55

IL-1 daha yüksek miktarlarda salgılanduğunda kan dolaşımına girer ve endokrin etkiler gösterir. IL-1 ve TNF hipotalamusuna etki ederek ateş, hepatositlere etki ederek de akut faz proteinlerin yapılmasını neden olmaktadır. IL-1 hipotalamusuna etki ederek kortikotrop salgılaticı faktörün salınmasını neden olur; bu da adrenal kortekse etki ederek steroidlerin salınığını sağlar ve steroidler de IL-1 ve TNF' nin salınığını inhibe eder. Böylece IL-1' in negatif feed-back etkisi ortaya çıkar.56 Bu özellikle TNF ve IL-6' da da mevcuttur.
IL-1 ve TNF osteoklastik aktiviteyi uyararak kemiğin yenilenmesine neden olurken aynı zamanda osteoblastlardan alkalin fosfatazin salınımını artırırlar. IL-1, fibroblast ve sinovyal hücrelerin proliferasyonunu artırıcı etki gösterir.\(^5\) IL-1 epitel hücrelerinin proliferasyonunu, tip IV kollajen ve interferon beta yapımını artırır ve bu etkisi ile de antiviral etki gösterir.\(^6\)

IL-1 romatoid artrit, septik şok, periodontitis, malignite, asbestoz, tüberküloz ve AIDS’de hastalığın aktivitesi ile ilişkili olmakla birlikte akut pankreatitte multiorgan yetmezliğinin fiziopatolojisinden sorumlu tutulmaktadır. IL-1’in tüberkülozda ve inflamatuar barsak hastalıklarında epitelyal hücrelerden akut faz proteinlerinin ve sitokinlerin üretimini artırıldığı gösterilmiştir.\(^7\) Çözünür IL-1 reseptörü hematopoezin stimülasyonunda, radyasyonun öldürücü dozlarına karşı korunmada ve kanser hücrelerinin büyümesinin durdurulmasında anti-inflamatuar ve immünosupresif tedavi için geliştirilmiştir.\(^8\)

Pro-inflamatuar sitokinlerden olan IL-1’ in periodontitisin patojenik sürecinde önemli bir rol oynadığı rapor edilmiştir.\(^9\) IL-1 hem immün hem de inflamatuar cevabı düzenleme yeteneğine sahip multifonksiyonel bir sitokindir. IL-1α ve IL-1β seviyesi periodontitisli hastaların dişeti oluğu sıvısında yüksektir. IL-1β periodontal dokularda en çok bulunan sitokindir.\(^10\)

IL-1’ in osteoklastları hedef alarak kemik yıkımıya sonuçlanan osteogenezisi uyarması iyi bilinmektedir. IL-1β’ nın osteoklastlar üzerindeki etkisi in-vitro olarak incelenmiş ve IL-1β’ nın osteoklastların olgunlaşmış formlarını artırduğu kadar rezorptif kapasitesini de artırduğu bulunmuştur.\(^8\)

Periodontal ligament hücreleri zengin kollajen doku içeren periodontal ligamentin en baskın hücreleridir ve IL-1β konsantrasyonu periodontal dokularda bu alanlarda artmaktadır. Ayrıca matriks metalloproteinaz-1 (MMP-1) ve matriks
metalloproteinaz-2 (MMP-2)'yi artırarak atasman kaybına yol açan periodontal ligament kollajenlerinin yıkımına yol açabilmektedir.

İnsan gingiva fibroblastları (HGFs) yapışık dişeti dokusunda bol bulunan hücrelerdir ve inflamasyonlu gingivada inflamasyonun kontrolünde önemli rol oynamaktadır. HGF'lerin inflamatuvar sitokinleri artırarak verdiği cevaplar, periodontitisin gelişimine katkıda bulunmak olarak düşünülmektedir. Shunsuke ve ark†† inflamasyonla ilişkili molekülerin düzenlenmesinde IL-1β ve IL-6/sIL-6R nin HGF'lerde sinerjik etki gösterdiğini ve IL-1β'nin HGF'lerde IL-6'nın sekresyonunu önemli düzeyde artırdığını rapor etmişlerdir.

2.2.2. İnterlökin 6 (IL-6)

İnterlökin 6 (IL-6) ilk olarak preaktivasyon halindeki normal insan lenfositleri ve Epstein-Barr virüsüne transformasyona uğrattılmış B lenfositler tarafından immünglobulin salgılatan bir faktör olarak tanımlanmış ve "B lenfosit uyarıcı faktör-2" olarak adlandırılmıştır.

IL-6, 26 kd ağırlığında olup 184 aminosüiten oluşur. Başlıca T ve B lenfositler, monositler, fibroblastlar, keratositler, endotelyal hücreler, astrositler, kemik iliği stromal hücreleri ve mezenşimal hücreler tarafından sentez edilir. Lenfosit, monosit, mesane ve akciğer hücreleri tarafından oluşturulabildiği gibi kardiyak miksoma, myeloma ve hipernefroma gibi tümör hücrelerince de oluşturulabilmektedir.

IL-6, akut yarışsal yanıtta C-reaktif protein (CRP), α1-antikimotripsin, α asit glikoprotein, fibrinojen, haptoglobin, C1 esteraz inhibitör gibi çeşitli akut faz proteinlerinin üretimini artırırken, pre-albümin, albümin, transferin ve retinol bağlayıcı protein üretimini ise azaltır. IL-6, prostoglandin E2'ye bağlı bir mekanizma yoluyla ateşe neden olur.
IL-6’nın hipofiz bezinden adrenokortikotropik hormon (ACTH) ve böreküstü bezinden glukokortikosteroidlerin salınmasına neden olduğu, B lenfositlerden immünglobulin üretime neden olduğu, granülosit makrofaj kolonu stimüle edici faktör (granulocyte macrophage colony stimulating factor-GM-CSF) ile sinirli etki yaparak hematopoietik progenitör hücrelerin granülositlere dönüşümünde önemli bir rol üstlendiği, beyin serotonin ve triptofan metabolizmasını artırdığı, bunun yanında IL-2 üretimi ve IL-2 reseptörlerinin etkinliğini artırdığı kaydedilmektedir.69

IL-6 nötrofil ve makrofajların olgunlaşmasını ve sitotoksik T lenfositler ile natürel killer (NK) hücrelerin farklılaşmasını sağlar. Nöron farklılaşması ve gelişiminde önemli bir rol üstlenir ve dopamin sentezini düzenler. Osteoklastların sayısı ve fonksiyonunu artırarak kemik erimesine neden olur.70

IL-6 birçok pro-inflamatuar özelliğe sahiptir, lenfositlerde adezyon moleküllerinin ve kemokinlerin üretime stimüle eder,71 karaciğer hücrelerinde akut faz proteinlerini uyarır,72 kanda nötrofil sayısını artırır. Ayrıca romatoid artritli (RA) hastaların kanında ve sinovial sıvılarında IL-6’nın seviyesinin arttığı gözlemlenmiştir.73 Genel olarak IL-6 RA ve periodontitisin patogenezinde büyük rol oynayan multifaktöriyel bir sitokin olarak iyi bilinmektedir.64

IL-6 yaralanma ve enfeksiyonlara karşı konak savunmasının majör medyatörüdür. O aynı zamanda osteoklastları aktive eder ve kemik rezorbsiyonuna neden olur.74 IL-6 osteoblast ve sinovial hücrelerden türeyen RANKL’nın salınımını artırarak osteoklastigenizisi indirekt olarak da artırabilir.75

IL-6, IL-1 ve TNF-α’nın biyolojik aktivitelerini eş zamanlı olarak artırır. Örneğin Nakahara ve ark.76’nın raporuna göre IL-1 ve TNF-α’nın sinovyal fibroblastlardan vasküler endotelyal büyüme faktörü (vascular endothelial growth factor-VEGF) üretime uyarsa, IL-6 tarafından artırılmaktadır. Üstelik Kawashiri ve ark.77
bu proinflamatuar sitokinlerin RA' li hastaların sinovyal hücrelerinden kemokin (C-C motif) ligand 20 (CCL20) üretimini sinerjik olarak artırıldıklarını rapor etmişlerdir. Nishikawa ve ark. IL-6' nın IL-1 ile sinerjik olarak karaciğer hücrelerinden CRP üretimini indüklediğini rapor etmiştir.

Matriks metalloproteinaz (MMP) kartilaj ve kemik yıkımında önemli bir rol oynamaktadır. IL-1 ve IL-6 synovial hücrelerden ve kondrositlerden matriks metalloproteinazların (MMPs) üretimini indüksiyonu iyi bilinmektedir. Hashizume ve ark. IL-6' nın MMP-1, MMP-3 ve MMP-13'ün üretimini uyarduğu rapor etmişlerdir. Suzuki ve ark. çözünür IL-6 reseptörlerinin (soluble Interleukin 6 receptor-s IL-6R) sinerjik olarak IL-1 ile birlikte synovial hücrelerden MMP üretimini stimüle ettiği göstermiştir.

Shibata ve ark. nın yaptığı çalışmanın bulguları IL-6' nın MMP-1 üretimini direkt etkilediğini göstermiştir. Bu çalışmaya göre IL-6, IL-1β' nın MMP-1 üretimi üzerindeki etkisini artırmaktadır. Bu muhtemelen IL-6, IL-1β' nın MMP-1 üzerindeki sinerjik etkisiyle periodontal ligamentlerin yıkımını desteklemesi şeklindedir.

2.2.3. Tümör Nekroz Faktörü-alfa (TNF-α)

Tümör Nekroz Faktörü (TNF) inflamatuar patoloji esnasında meydana gelen olayların bir kısmına aracılık eden bir sitokindir. TNF moleküler ağırlığı yaklaşık 17.000 kDa/monomer olan trimerik bir proteindir. TNF' nin TNF-α ve lenfotoksin-alfa olarak da bilinen TNF-β olmak üzere iki farklı tipi vardır. Hücre yüzeyi yapısı açısından birbirine benzer iki farklı TNF reseptörü vardır: TNF reseptör-1 ve TNF reseptör-2. Bu reseptörler farklı sitoplazmik kısımlara sahiptirler ve bunun sonucu olarak farklı uyarılarla aktif hale gelirler. Deneysel kanıtlar, TNF’ nin mikrobiyal patojenlere karşı dirençte rol oynamadığını
göstermiştir. TNF indüksiyonu, kemotaktik sitokinler olarak rol oynayan kemokinler ve prostoglandinleri üreten siklooksijenazlar gibi sekonder medyatörlerin üretimini uyarır.

TNF-α, makrofajlar ve monositler tarafından üretilen ve “kaşektin” olarak da bilinen bir polipeptid sitokinidir. TNF-α çeşitli hücre popülsyonları üzerinde iltihabi ve immün düzenleyici olarak etki gösterir.

TNF-α aktive monositler, makrofajlar ve daha az çoğunlukla aktive T hücreler, B hücreler, mast hücreleri, fibroblast, keratinosit, Kupffer hücreleri, düz kas sinovyal örtü hücreleri ve bazofil gibi birçok hücre tipinden salgulanmaktadır. TNF-α üretimi IL-10, TGF-β, prostoglandin E2, siklosporin A, deksametazon, ibuprofen, metilprednizalon ve pentoksifilin tarafından inhibe edilir.

TNF-α immüno-inflamatuar reaksiyonarda düşük konsantrasyonlarda lokal etki gösteren güçlü parakrin ve otokrin düzenleyicidır. O aynı zamanda birçok hücre tipinde büyüme ve farklılaşmayı düzenleyen sitokinidir. Çalışmalar TNF-α’nın akut inflamasyonda ve antitümor immünitede en önemli sitokin olduğunu göstermektedir. TNF-α nötrofiller ve endotel hücrelerini uyarak adezyon ve kemotaksisi yönetir.

TNF-α inflamatuar ve immün süreçlerle ilgili ana sitokinlerden birisi olarak görülmektedir. TNF-α hücrelerle karşılıklı etkileşim içine girerek ya da pleiotropik tarzda etkileyerek, inflamasyonun artması ve kemik rezorbsiyonunda farklı hücre tiplerinde ve dokularında etkilerde bulunarak inflamasyon ve sitotoksiste de anahtar rol oynar.

Periodonsiyumda birçok kaynaktan üretilebilen TNF-α, dişeti fibroblastlarını da içerecek şekilde fibroblastları uyararak doku yıkımından sorumlu bir enzim olan kollejenaz üretimini ve kemik rezorbsiyonu stimüle eder.
TNF-α in-vitro ve in-vivo kemik rezorbsiyonunun etkili stimülatördür ve matür osteoklastlar içerisinde osteoklast prekürsörlerinin farklılaşması artırır. Bu sitokin hem osteoklastların farklılaşması ve olgunlaşmasında doğrudan hem de kemik matriksini etkileyerek doyally yoldan etkiler. Bununla birlikte TNF-α kemik rezorbsiyonunda tek başına değildir, IL-1 ve RANKL kemik rezorbsiyonuyla ilişkili inflamasyon alanında bol bulunur. Ayrıca nükleer faktör kappa B reseptör aktivatörü(receptor activator for nuclear factor κB- RANK) ve TNF receptor 1 (TNFR1) arasında kombine sinyallerin sonucunda TNF-α tarafından osteogenezisin uyarıldığı gösterilmiştir.

2.2.4. İnterlokin 17(IL-17)

IL-17 ise başlica CD (+4) ve CD (+8) T lenfositler tarafından sekrete edilen bir sitokindir. CD4 T lenfositlerinde klonlanmıştır ve 155 aminoasit içerir. IL-17 sitokin ailesi içinde 6 üye vardır: IL-17A (yaygın olarak IL-17 olarak anılır), IL-17B, IL-17C, IL-17D, IL-17E (IL-25 olarak da bilinir) ve IL-17F. Bu üyeler içinde IL-17A ve IL-17F nin biyoloik fonksiyonları en iyi anlaşılmıştır. Bu iki sitokin güçlü homolog etkiye sahiptir. Fonksiyonel olarak IL-17A ve IL-17F pro-inflamatuar cevabı düzenlenir. IL-17B, IL-17C ve IL-17D' nin pro-inflamatuar sitokinlerin üretimini indüklediği görülmüştür fakat onların biyolojik fonksiyonları büyük oranda bilinmez.

IL-17A ve IL-17F pro-inflamatuar sitokin, antipatojenik peptid ve kemokin salınımını indükleyerek immünolojik fonksiyonları düzenler. IL-17A ve IL-17F nin S. aureus' a karşı savunmada fonksiyonu büyük, çünkü yalnızca bu iki sitokin eksik olduğu zaman hayvanlar bu bakteriye karşı daha hassas olmaktadırlar.

Birçok tip patojenin invazyonuna karşı konak savunmasında önemli olması rağmen, düzensiz IL-17A ve IL-17F üretimi pro-inflamatuar sitokinlerin aşırı üretimi ve
otoimmünite ve doku hasarına yol açan kronik inflamasyonla sonuçlanır. IL-17 ailesi sitokinleri multipl skleroz, romatoid artrit, inflamatuar barsak hastalığı ve psöriazis gibi birçok otoimmün hastalıklarla ilişkilidir. 95

IL-17A romatoid artritli (RA) hastaların sinovyumunda ve sinovyal sivılarında saptanmıştır. 96 RA'lı hayvan modelleri kullanılarak yapılan birçok çalışma IL-17A'nın bu hastalığın ilerlemesinde anahtar rolü olduğunu göstermiştir. Hastalıktan sonra IL-17' nin blokajı kemik ve kartilaj erozyonunu etkili bir şekilde önleme ve klinik semptomların şiddetini azaltmaktadır. 97

IL-17’nin, fibroblastlar, endotel hücreleri ve epitel hücrelerinde IL-6, IL-8, granülosit makrofaj koloni stimüle edici faktör (GM-CSF) ve PGE2 üretimini artırduğu ve hücre içi adezyon molekül-1’in hücre yüzeyinde etkinleşmesine neden olduğu da kaydedilmektedir. 98

IL-17A başlangıçta T helper 17 (Th17) hücrelerinden salınan bir stokin olarak tanımlanmıştır. Bununla birlikte sonraki çalışmalar CD (+4) ve CD (+8) T hücreleri, natürel killer hücreler, nötrofiller, eozinofiller, mast hücreleri ve makrofajları içeren diğer çeşitlilik hücrelerin IL-17A kaynağı olarak tanımlanmıştır. 99 Th17 hücreleri periodontitisli hastaların gingival dokusunda saptanmış ve IL-17 ın infiltrasyonunun inflamasyonun şiddetine ilişkili hücreleri üretiliği görülmüştür. 101

Önceki çalışmalar IL-17 ailesinin serum, tükrük ve dişeti oluğu sıvısındaki düzeyi ile periodontitis arasındaki ilişkiye klinik olarak araştırılmış ve özellikle de IL-17A üzerine odaklanmıştır. IL-17B, IL-17C, IL-17D, IL-17F ve IL-17A/F tüm çalışmalarında proinflamatuar fonksiyona sahip olarak rapor edilmişlerdir. 99

IL-17 seviyeleri çözünür dokularda, periodontitisli hastaların serum, tükrük ve dişeti oluğu sıvısında yükselmiştir. İlginç olarak IL-17A serum düzeyi agresif periodontitisli hastalarda klinik olarak atışman kaybı ile ilişkili olarak gösterilmiştir. 15
Üstelik periodontitisli hastaların hem dişeti olgu sıvısında IL-17A'nın seviyesi hem de agresif periodontitisli hastalarda serumda IL-17A'nın seviyesi periodontal tedaviden sonra azalmıştır. Bu yüzden bu bilgiler IL-17A'nın periodontitisin patogenezinde rol oynadığını göstermiştir.

Son yıllarda birçok çalışma IL-17'nin aynı zamanda kemik rezorbsiyonunda da önemli rol oynadığını göstermiştir. Moon ve ark.¹⁰² IL-17' nin IL-32 ile birlikte sinerjik olarak romatoid artritte kemik yıkımını artırdığını rapor etmiştir. Bunun yanında IL-17' nin osteoblastlarda, synovial hücrelerde ve mezenşimal kök hücrelerinde IL-1, PGE2, TNF-α ve RANKL'ı indükleyerek indirekt olarak osteoklast farklılaşmasını artırdığını görülmüştür.¹⁰³ Hayashi ve ark.¹⁰⁴ IL-17 ve IL-17R'ın deneysel diş hareketleri boyunca periodontal ligamente (PDL) saptandığı rapor etmiştir. Bu çalışma aynı zamanda IL-17' nin IL-6' yi indükleyerek insan periodontal ligament hücrelerinin (hPDLCs) üretimini ve osteo/odontokaltogenezi stimule ettiği göstermiştir.

IL-17A, endometrial stroma hücreleri, hava yolu epiteli hücreleri, kardiyak fibroblast hücreleri gibi çeşitli yapıdaki hücrelerin çoğalmasını ve göçünü uyarır.¹⁰⁵ Huang ve ark.¹⁰³ IL-17A'nın insan kemik ilğinden türetilen mezenşimal kök hücrelerin çoğalması ve osteoblast farklılaşmasını stimule edebildiğini rapor etmiştir. PDL fibroblastları bir dizi kollajen matriks tiplerinin tamir ve bakımına katılmaktadır. Yan Wu ve ark.¹¹⁸ yaptıkları çalışmada IL-17A'nın varlığında PDL fibroblastlarının gücü önemli derecede artmaktadır. Bu çalışmaya göre IL-17A'nın periodontal yara iyileşmesini düzenlemesi PDL fibroblastlarının proliferasyonundan daha çok migrasyonuya kontrol ederek yapmaktadır. IL-17A, PDL fibroblastlarındaki IL-17 reseptörleri aracılığıyla p38 mitojen aktive edici protein kinaz (MAPK) ve nükleer faktör-kappa B (NF-κB) yolağının aktivasyonuyla MMP-1 ekspresyonunu indüklemektedir ve bu hücre göçünün artmasıyla sonuçlanmaktadır.
IL-17 aynı zamanda inflamatuar kök rezorbsiyonunu uyaran önemli bir medyatördür.106 IL-17' nin periodontal ligament ve alveoler kemik rezorbsiyonunun remodelasyonunu düzenleyerek ortodontik dış hareketinde önemli bir rol oynadığı beklenmektedir. IL-17 ve IL-17R proteinleri ortodontik zorlanmaya maruz kalan farelerin periodontal ligament dokularında saptanmıştır. Ortodontik zorlanmaya maruz kalan periodontal ligament dokularında aynı zamanda Th17 hücreleri belirmiştir.104

IL-17' nin sinovyal fibroblastlarda ve gingival fibroblastlarla IL-6 ve IL-8 sekresyonunu stimüle ettiği görülmüştür.19 IL-17 aynı zamanda synovial fibroblastlarla MMP-1 ve MMP-3'ün üretimini uyarmaktadır. Bu raporlar göstermektedir ki mekanik streslere cevap olarak IL-17 üretimi, proinflamatuar sitokinlerin üretimini ve periodontal ligamentlerde ekstrasellüler matriksin bozulmasını artırmaktedir.

\section*{2.3. PDHG ve POF Lezyonlarının Histopatogenezi}

\subsection*{2.3.1. PDHG ve POF' un Patogenezi ve Muhtemel Mekanizmalar}

PDHG ve POF lezyonlarının histoptolozisi hala tam olarak açıklanamamamıştır. Dev hücreli lezyonlarda bu alanda yapılan yenilikçi çalışmaları, osteoklastlara benzer özelliklere sahip çok çekirdekli dev hücrelere, kemik rezorbsiyonuna, kalsitonine karşı yanıtla, osteoklastlara yapışık özel monoklonal antikorlara ve tartara dirençli asit fosfatazlara yoğunlaşılmıştır.107

Osteoklast hücreleri için en iyi belirteçin kalsitonin reseptörleri olduğu ilk olarak 1999 yılında Pogrel ve arkadaşlarının çalışmalarda dev hücreli lezyonlarda bu reseptörlerin izole edilmesi ile ortaya konulmuş ve daha sonra bununla ilgili birçok seri çalışma yapılmıştır.108-112

Mononükleer hücre popülasyonunda yapılan ultrastrüktürel ve immünolojik temelli çalışmalar 2007 yılında Vered ve arkadaşların myofibroblastları tanımlanmıştır.

Kanıtlar myofibroblast fenotipindeki hücrelerin durağan olmadığını, onların sırasıyla inflamatuvar sitokinler, TNF-α ve RANKL' in stimülasyonu ile osteoblast benzeri fenotip kazanabileceğini göstermiştir. Bu lezyonlarda myofibroblastların öne lezyonların biyolojik davranışı içinde agresifliğini artırması ile direkt ilişkili olarak görülmesinde yatmaktadır. Fakat myofibroblastların yoğunluğunun artması ile dev hücreli lezyonların agresifliğini arasında direkt ilişki olmadığını kanıtlanmıştır.

Bununla birlikte bu hücrelerin kaynağı (hem kemik iliği hem de makrofajlar) agresifliğin artmasındaki oynayabileceği rol de tam açık değildir.

Mikroskobik bulgular dev hücreli lezyonların birçok kan damarı, bol kırmızı kan hücreleri, damar duvarına bitişik dev hücreler barındırması nedeniyle zengin vasküler yapıya sahip olduğunu göstermiştir. Yine POF lezyonları da hücreden zengin yoğun fibroblastik bağ dokusundan oluşmuş olup her iki lezyon da mezenşimal bir içeriğe sahiptir. Her iki reaktif lezyonun büyümesi ve lezyon altında kemik rezorbsiyonları izlenmesi nedeniyle bu lezyonların patogenezinin açıklanmasında anjiyogenezi ve osteoklastogenezi olayları üzerinde durulmaktadır.

Anjiyogenezi Süreci

Kan damarlari oluşmadan önce yeni kapillerlerin gelişmesi anjiyogenezi olarak adlandırılır. Anjiyogenezis embriyonik gelişim ve yara iyileşmesi gibi fiziolojik...
durumlar içinde fazla kontrollü bir fenomendir. Buna karşın tümör büyümesi ve ilerlemesi, osteoporoz, RA ve periodontitis gibi doku ve kemik yıkımıyla ilişkili iskeletsel inflamatuvar bozukluklar gibi patolojik durumlarda anjiyogenezis kontrolsüz olur. Bunun hayati önemi anjiyogenezin bazı faktörler tarafından yönetilmesidir; şimdiye kadar en bilineni vasküler endotelyal büyüme faktörü (VEGF) ve temel fibroblast büyüme faktörü (bFGF)’dür.⁹³

Son dönemlerde dev hücreli lezyonlarda VEGF ve bFGF’ nin immüno-histokimyasal ekspresyonu çalışmalariyla anjiyogenezisin büyüklüğü analiz edilmiştir. Çalışma sonuçları anjiyo-genetik faktörler için az sayıda kan damarının pozitif olması nedeniyle anjiyo-genetik aktivitenin bu lezyonlarda düşük olduğunu göstermiştir. Bununla birlikte VEGF ve bFGF için mononükleer hücreler ve dev hücrelerin dikkate değer sayısı pozitif bulunmuştur. Bu gözlemin altında yatan gerçek şu dur ki, potent anjiyogenik faktörler olan VEGF ve bFGF’ nin esas rolü osteoklast formasyonu sürecinde oynadığı görülmüştür.¹¹²

Osteoklastogenezis Süreci

Normal fizyolojik durumlarda kemik yapımı ve kemik yıkımı arasında denge vardır, inflamatuvar durumlarda bu denge bozulur.

Osteoklastlar kemik rezorbsiyonundan sorumlu hücrelerdir ve bu hücrelerin aktivasyonu ve farklılaşması için bazı proteinler gerekir. Osteoklastlar çeşitli lokal ve sistemik faktörlerin altında hematopoietik dokudan kaynak alanak tüberen hücrelerdir. Osteoklastogenezis içindeki faktörler; osteoklast farklılaştırılan faktör, makrofaj koloni stimüle edici faktör (M-CSF), VEGF ve TNF-α’dır.¹¹⁴

Osteoklastogenezis tüm osteolitik lezyonlarda gözlemlenmiştir. Çok nükleuslu dev hücreler ve tek nükleuslu hücreler, ekstrasellüler matriks metalloproteinazlar (MMPs) gibi makrofaj fenotip üreten enzimlerle kemik demineralizasyonunu
gerçekleştirir. İlaveten bu hücre tiplerinden salınan TNF-α ve transforme edici büyüme faktörü-beta (TGF-β) gibi sitokinler osteoklast farklılaşmasını stimüle ederler.

İnflamatuar cevap süresince IL-1β, IL-6, IL-11, ve IL-17 ve TNF-α gibi proinflamatuar sitokinler osteoblast/stromal hücrelerde OPG üretimini azaltırken RANKL ekspresyonunu artırarak osteoklastogenezisini indükleyebilir. Buna karşın IL-13 ve interferon gamma (IFNγ) gibi anti-inflamatuar mediatörler OPG ekspresyonunu artırarak RANKL ekspresyonunun azaltarak osteoklastogenezisi inhibe edebilir.

Kemik rezorbsiyonu inflamatuar mediatörlerin kritik konsantrasyonuna bağlıdır. Şekil 1’ de görüldüğü üzere IL-1, IL-6, IL-11, IL-17, TNF-α, lösemi inhibitör faktör (LIF) ve onkostatin M (OSM) gibi poinflamatuar sitokinlerin ekspresyonu kemik rezorbsiyonuna yol açar. Bradikinin, kallidin ve thrombin gibi kininler ve çeşitli kemokinler de kemik rezorbsiyonu üzerinde stimülatör etkiye sahiptir. IL-4, IL-10, IL-12, IL-13, 1L-18, IFN-β ve IFNγ gibi anti-inflamatuar sitokinlerin ve diğer medyatörlerin ekspresyonu ise karşı etki göstererek kemik rezorbsiyonunu inhibe eder.

Şekil 2.1. Proinflamatuar sitokinler ve diğer medyatörlerin RANKL'ı etkileyerek kemik rezorbsiyonunu stimülasyonu ve inhibisyonu
2.3.2. PDHG ve POF Lezyonlarının Patogenezinde Sitokinlerle Birlikte Rol Alan Medyatörler

PDHG ve POF lezyonlarında inflamatuar olaylarda en büyük rolü pro-inflamatuar sitokinler rol oynamaktadır. IL-1, IL-6, IL-17 ve TNF-α gibi proinflamatuar sitokinler PDHG ve POF gibi reaktif lezyonlarda hem anjiyogenezis olaylarında hem de osteoklastogenezis olaylarında rol alımıaktadırlar. Bu süreçlerde proinflamatuar sitokinlerin rolü hem direkt olarak hem de etkileşime girdiği diğer medyatörler aracılığı ile endirekt olarak ortaya çıkmaktadır. PDHG ve POF lezyonlarında sitokinlerden başka rolü olan bu medyatörlerin başlıcaları; büyüme faktörleri, MMPs, RANKL, OPG, faktör 6 ile ilişkili TNF reseptörü (TRAF6), kemokinler ve paratiroid hormon (PTH) gibi hormonlardır.

Büyüme Faktörleri

PDHG ve POF lezyonlarının patogenezinde çeşitli büyüme faktörleri rol oynamaktadır. Anjiyogeneziste rolü olan en önemli faktörler vasküler endotelyal büyüme faktörü (VEGF) ve temel fibroblast büyüme faktörü (bFGF)'dir. Transforme edici büyüme faktörü-beta (TGF-β) ise özellikle osteoklastogeneziste önemli rol oynamaktadır.

Vasküler endotelyal büyüme faktörü (VEGF) solid tümörlerin ilerlemesinde rol alan potent anjiyojenik faktördür.119 VEGF pre-osteoklastlar için potent kemoatraktive ajan olarak osteogeneziste önemli bir rol oynar. Osteoklastların farklılaşmasını uyarak osteoklastların farklılaşmasında direkt rol alır.120 Temel fibroblast büyüme faktörü (bFGF) hem en önemli potent anjiyogenik faktördür hem de osteoklastogenezis içinde anahtar rol oynar. bFGF' nin bu iki rolü büyük serin in-vivo ve in-vitro çalışmalarla ortaya konulmuştur.121 bFGF anjiyogenezis içinde endotelyal hücrelerden VEGF üretimini indükler. VEGF vasküler permeabiliteyi
artırır ve osteoklast progenitör hücrelerin uyarılması ve farklılaşması için kemoatiraktan olarak rol oynar. Anjiyojenik stimülasyon osteoklast progenitör hücrelerin periferal dolaşımından kemik doku için göçünü ve rezorbift osteoklast hücrelerine dönüşümünün artırır. İkinci olarak da bFGF RANKL-mRNA sentezini artırır. RANKL, osteoklast prekürsörü olarak bilinen siklooksijenaz (COX)-2 ekspresyonunu selektif olarak indükler ve bu süreç prostoglandin E2 (PGE2) ve mitojen aktive edici protein (MAP) ürettikten sonra. Çünkü mitojen aktive edici proteinkinaz (MAPK), p38, p42 ve p44 osteoklastogeneziste anahtar rol oynamaktadır. Bu süreç bFGF nin indüklediği RANKL, COX2 ve MAPK yolağı osteoklastogenezis ve kemik rezorbsiyonu ile sonuçlanır.

Transforme edici büyüme faktörü-beta (TGF-β) plateletlerden, T lenfositlerden, endotelyal hücrelerden ve makrofajlardan üretilen 390 aminoasitten oluşan multifonksiyonel bir sitokindir. TGF-β fibroblast proliferasyonunun stimulatörü olarak iyi bilinmesine ek olarak kemik metabolizmasında da rol oynar. TGF-β pre-osteoklastları etkileyerek ve bu hücrelerin farklılaşmasını artırarak onları osteoklastlara dönüştürür.

Matos ve ark. yaptığı çalışmada dev hücreli lezyonlarında TGF-β ile TNF-α’nın karşılıklı etkileşimlerinin osteoklastogenezis ve kemik rezorbsiyonunda önemli olabileceği göstermiştir. Çünkü TGF-β yokluğunda TNF-α’nın aktive edilmiş T hücre nükleer faktörü (NFAT) ekspresyonunun artışı indüklediği görülmüştür.

Proteazlar

Multipl proteazların periodontitiste ekstrasellüler matriksin yıkılmasına rolü oldukları düşünülmektedir. Bu proteazlar, matriks metalloproteinazlar (MMPs), katepsin B gibi sistein proteazlar ve diğerlerini içerir. Matriks metalloproteinazlar içinde özellikle matriks metalloproteinaz 1 (MMP-1), matriks metalloproteinaz
2(MMP-2) ve matriks metalloproteinaz 9 (MMP-9) periodontal dokuların yıkımında önemli rol oynamaktadır.

MMP-1 gingival kollojen liflerin yıktılmasıda önemli rol oynar çünkü yapışık dişeti dokusunda baskı olan tıp 1 kollajendir. MMP-1 ekstrasellüler matriksin yıkmının başlatıcı olarak hizmet eder. MMP-1 interstisyel kollajen yıkmında primer kolajenaz olarak bulunmuştur ve onun dişeti oluğu sıvısındaki konsantrasyonu periodontit ile ilişkili olarak artmıştır. MMP-1 protein mRNA seviyesinin artması da periodontitli hastalarda saptanmıştır.

MMP-2, matriks dejenerasyonunda uygun alanlarda enzimlerin lokalizasyonu için önemli bir faktördür.

MMP-9, vasküler membranların remodelingini, kemik rezorbsiyonu ve non-mineralize kemik matriksinin proteolizini düzenleyerek anjiyogenezis sürecinde önemli bir rol oynar.

Katepsin B, kollajen lifleri direkt olarak yada MMP-1‘ in aktivasyonu ile proteazlara katkıda bulunarak indirekt olarak yıktırır.

İnflame insan gingiva doku örnekleri ve kültürleri, sağlıklı insan gingiva dokusu örnekleri ve kültürlere göre daha yüksek seviyede MMP-1 ve MMP-2 aktivitesi içermektedir. MMP-1 ve MMP-2 nin dişeti oluğu sıvısındaki konsantrasyonu periodontal hastalığın şiddetini ile pozitif ilişkilidir.

RANKL/OPG

Nükleer faktör kappa B reseptör aktivatörü ligandı (receptor activator for nuclear factor κB ligand -RANKL) TNF süperfamilyasının bir üyesidir ve osteoklast farklılaştırıcı faktör olarak bilinir. Nükleer faktör kappa B reseptör aktivatörü (receptor activator for nuclear factor κB -RANK)’ın iki formu vardır: Çözünür formu (sRANKL) ve membrana bağlı formu (mRANKL). RANKL osteoblastlardan ve stromal
hücrelerden salgılanır. RANKL osteoklast ve preosteoklast hücrelerin yüzeylerindeki RANK reseptörlere bağlanır ve osteoklastların çoğalması ve farklılaşmasını stimule ederek osteoklastların oluşumunu artırır.133

Osteoprotegerin (OPG) osteoblastlardan ve kemik iliği stromal hücrelerinden üretilir. OPG RANK reseptörlerine bağlanarak RANKL'ı engeller ve aşırı kemik yıkımını tersi yönde düzenlenir.134

Kemik rezorbsiyonu OPG ve RANKL arasındaki dengenin bozulmasıyla başlar. Onların her ikisi de osteoklast prekürsörlerinin farklılaşmasını düzenler. Böylece RANKL'ın OPG'ye oranı periodontitiste alveoler kemik rezorbsiyonunun bir göstergesi olduğu kadar, osteoklastogeneziste anahtar parametre olarak da görülmektedir.135

İnsan periodontal hücreleri sürekli OPG salgılar fakat bakteriyel değişiklikler ve ortodontik diş hareketlerinden etkilenmedikçe RANKL salınımı düzenli değildir.136 İnsan periodontal hücrelerinde RANKL ve OPG salınımı, çeşitli uyaranlar tarafından ve osteoklastojenik moleküllerin düzeninin bozulması sonucunda alveolar mekanizmalar tarafından etkilenebilmektedir.137

RANKL aracılı osteoklastogenezis periodontitiste inflamatuar kemik rezorbsiyonunda esas rolü oynar ve RANKL ekspresyonu periodontitiste artar.138 İnflamatuar patolojik kemik rezorbsiyonunda aktive olmuş T lenfositlerin sRANKL üretimini artırarak kemik rezorbsiyonunu düzenleyebileceğini göstermektedir. Kanıtlar aktive olmuş T ve B lenfositlerin hastalıklı periodontal dokularda RANKL ekspresyonunun major kaynaklarından biri olduğunu göstermiştir.133

RANKL'ın OPG'ye oranı inflamatuar dokularda IL-6, TNF-α, PGE2 ve IL-1 gibi çeşitli sitokinler tarafından etkilenmektedir. İnflamatuar sitokinler direkt olarak yada indirekt olarak osteoklastogenezize katkılar ve alveolar kemik kaybından sorumludurlar.139
Son zamanlarda periodontitiste sağlıklı dokular ile karşılaştırıldığında RANKL'ın arttığı, OPG' nin ise azaldığı gösterilmiştir ve bu da RANKL/OPG oranının artması ile sonuçlanmaktadır. Bu oran aynı zamanda sigara içenlerde ve diyabetiklerde de artmaktadır. 140 TRAF6, NF-κB yazılmasını aktive ederek RANKL’ı güçlü şekilde inhibe etmektedir.141 Çalışmalar RANKL/OPG oranının periodontitlisli bireylerde sağlıklı kontrol gruplarına göre yüksek olduğunu göstermiştir.142,143 İmmünohistokimyasal preparatlarda RANKL ve OPG' nin semikantitif analizlerinde RANKL/OPG oranı ciddi kronik lokalize periodontitiste 3.33/1.89 iken sağlıklı gingivada 1.8/4.0 olarak bulunmuştur.142 RANKL/OPG oranı gingival dokularda olduğu kadar dişeti oluğu sıvısında net bir şekilde artmıştır. Lu ve ark143 yaptığı çalışmada periodontitlisli bireylerin dişeti oluğu sıvısında RANKL konsantrasyonu kontrol grubu ile karşılaştırıldığında artarken OPG konsantrasyonunun değişmediğini göstermiştir. Bununla birlikte bulgular hala periodontitiste RANKL/OPG oranının kontrol grubu ile karşılaştırıldığında net bir şekilde artmış olduğunu göstermektedir.

RANKL/OPG oranı aynı zamanda periodontitisin klinik şiddetini ile de ilişkili olabilir. RANKL/OPG oranı kronik periodontitisli ve yaygın agresif periodontitisli hastalarda dişeti oluğu sıvısında gингivitis yada sağlıklı kontrol gruplarına göre yüksek olduğu görülmüştür.144

TRAF6

Faktör 6 ile ilişkili TNF reseptörü (tumor necrosis factor receptor associated factor 6, TRAF6) hem istilacı patojenlere karşı doğal immün yanıtta hem de osteoklast gelişiminde kritik rol oynar.145 Yang ve ark146 farelerde periapikal lezyonlarda TRAF6 ekspresyonunu ve bunun periapikal lezyonda kemik rezorbsiyonuna katılabildiğini göstermişlerdir. Bu yüzden TRAF6 ekspresyonu apikal periodontitin gelişiminde büyük
öneme sahiptir. Birçok çalışma TRAF6’nın hücre yüzey reseptörlerine bağlanarak adaptör protein olarak rol oynadığını, böylelikle kinazların salınımını artırdığını, bunun da inflamatuar gen ekspresyonu için anahtar yazılım faktörü olan NF-κB’nin aktivasyonu ile sonuçlandığını göstermiştir.147 TRAF6 NF-κB faktör yazılımını aktive ederek RANKL’ı güçlü şekilde inhibe etmektedir.141

Kemokinler

IL-8 ve monosit kemotaktik protein 1 (MCP-1) gibi kemokinler periodontitisin şiddetini ile ilişkilidir.148 Daha önce yapılmış birkaç çalışma periodontal tedaviden sonra dişeti oluğu sıvısında kemokinlerin azaldığını göstermiştir.149 Bradikinin ve kallidin gibi kininler, trombin ve çeşitli kemokinler kemik rezorbsiyonunda stimülatör etkiye sahiptir.118

Hormonlar

Paratiroid Hormonun (PTH) osteoblastların varlığında osteoklastların formasyonunu ve aktivitesini artırığı, osteoblastların yokluğunda ise hematopoietik prekürsörlerden osteoklast benzeri hücrelerin formasyonunu hızlandırdığı görülmüştür.150

PTH’in osteoklastlar üzerine doğrudan etkisine yönelik kanıtların yanı sıra dolaylı mekanizmayı destekleyen daha çok kanıt vardır. PTH osteoblastlardan RANKL salinımını stimüle eder ve bu yolla osteoklastları aktive eder. PTH aynı zamanda osteoklastik farklılaşmayı artıran osteoblastik IL-6 üretimini stimüle eder ve bu durum osteoblastların kemik yüzeylerinin rezorbsiyonlara daha hassas olmasını azaltır.133

Kalsitonin, IFN-γ ve TGF-β osteoklast aktivite ve farklılaşmasının potent inhibitörleridir.151

Seks steroidleri osteoblastların proliferasyonunu ve farklılaşmasını stimüle ederek anabolik etki yaptığı kadar IL-6 transkripsiyonunu da azaltır. Menapoz sonrası
kadınlarda osteoklastik rezorbsiyonun artması ve osteoblastik rezorbsiyonun azalmasına bağlı osteoporoz ortaya çıkar.
3. MATERİAL VE METOT

3.1. Çalışma Grubu

3.2. Örneklerin Toplanması

Retrospektif yöntemle yürütülen bu çalışma hastalardan biyopsi ile alınan ve parafin bloklarda muhafaza edilen 20 adet periferal dev hücreli granüломa ve 20 adet periferal ossifiye fibroma örneği üzerinde yapılmıştır. Hasta kayıtları taramakarak tüm
olguların klinik muayene ve radyolojik bulgularının dökümü elde edilmiş ve bu bilgiler yaş, cinsiyet, lokalizasyon ve histopatolojik özellikleri bakımından değerlendirilmiştir. Parafin blokların ve kesitlerin zarar gördüğü olgular ile hasta verilerinin toplanamadığı olgular çalışma dışı bırakılmıştır.

3.3. İmmünohistokimyasal İnceleme

3.3.1. İmmünohistokimyasal Boyama

Olgulara ait dokulardan 3μ kalınlığında kesitler alınarak anti-TNF-α (poliklonal, dilüsyon: 1/100, Abcam, USA), anti-IL-6 (monoklonal, dilüsyon: 1/150, Abcam, USA), anti-IL-17 (poliklonal, dilüsyon: 1/100, Abcam, USA) ve anti-IL-1 beta (poliklonal, dilüsyon: 1/100, Abcam, USA) antikorları ile immünohistokimyasal boyama yapılmıştır. İmmünohistokimyasal çalışma için ABC (Avidin Biotin Complex) yöntemi kullanılmıştır.

Kesitlerin alınmasını takiben sırasıyla distile su ile 1 dakika, %3’lük hidrojen peroksidaz ile 10 dakika, distile su ile 1 dakika, fosfat tamponlu salin (pH 7.4) ile 2x3 dakika, blocking solüsyonu ile 5 dakika işlem yapılmıştır. Sitrat tampon (pH 6) ile antijen retrieval işlemi uygulanmıştır. Ardından primer antikorlar ile inkübasyon işlemi uygulanmıştır. Daha sonra fosfat tamponlu salin ile 2x3 dakika, link solüsyonu ile 20 dakika, fosfat tamponlu salin ile 2x3 dakika, streptavidin ile 20 dakika, fosfat tamponlu salin ile 2x3 dakika, AEC kromojen ile 3 dakika, distile su ile 2x1 dakika, hematoksilen boyası ile 30 saniye, distile su ile 3x1 dakika işlem yapılmıştır. Havada kurutulup aqueous mounting medium 5 damla damlatılarak lamel ile kapatılmıştır. Hazırlanan preparatlar Nikon Eclipse E600 model mikroskop ile incelenmiştir.
3.3.2. İmmünoreaktivitenin Değerlendirilmesi

Tüm antikorlar için Papanicolaou ve ark.'ın yaptığı çalışmada kullandığı değerlendirme protokolü uygulanmıştır. Boyama yapılan her kesitte rastgele 4 alan seçilerek, 400x büyütme ile pozitif boyanan hücre yüzdesi ve boyaşma şiddeti değerlendirilmiştir. Periferal dev hücreli granülom olgularında stromal iğsi hücreler ve mültnükler dev hücreler, periferal ossifiye fibrom olgularında stromal hücrelerdeki boyaşma incelemiştir.

Boyaşma yüzdesi değerlendirmesinde;
Skor 0: <10 hücrede boyaşma olan olgular
Skor 1: ≥10 ve <25 hücrede boyaşma olan olgular
Skor 2: >25 ve <50 hücrede boyaşma olan olgular
Skor 3: >50 ve <75 hücrede boyaşma olan olgular
Skor 4: >75 ve <100 hücrede boyaşma olan olgular olarak kabul edilmiştir.

Boyaşma şiddeti değerlendirmesinde;
Skor 0: Boyaşma olmayan olgular
Skor 1: Zayıf boyaşma olanlar
Skor 2: Orta derecede boyaşma olanlar
Skor 3: Kuvvetli boyaşma olanlar olarak kabul edilmiştir.

Tüm antikorlar için “İmmünoreaktivite Skoru (IRS)” değerlendirilmiştir. Her bir alan için bulunan boyaşma yüzdesi skoru ve boyaşma şiddeti skoru çarpılarak kombine immünoreaktivite skoru değeri bulunmuştur. Rastgele seçilen dört alanın ortalaması ilgili örneğin immünoreaktivite skoru olarak kabul edilmiştir. Aşağıda PDHG lezyonlarında 1 nolu örneğe ait dev hücrelerde ve stromal hücrelerde IRS hesaplaması için örnek tablo yer almaktadır.
Tablo 3.1. İmmünoreaktivite skoru (İRS) hesaplaması için örnek tablo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dh</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9.75</td>
</tr>
<tr>
<td>sh</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9.75</td>
</tr>
</tbody>
</table>

dh: dev hücre; sh: stromal hücre, b%: boyanma yüzdesi; bş: boyanma şiddeti.

3.4. İstatistiksel Analiz

İstatistiksel analizlerde sosyal bilimler için istatistik paketi (Statistical Package for the Social Sciences-SPSS version 22.0, SPSS Inc. Chicago, Ill. USA) kullanılmıştır. Elde edilen İRS skoru verileri SPSS programında analiz edilmiştir. Veriler parametrik dağılım gösteriyorsa Bağımsız Değişkenler T Testi, non-parametrik dağılım gösteriyorsa Mann-Whitney U Testi ile incelenmiştir. Normal dağılımlar için ortalama ve standart sapma değerleri verilirken, normal olmayan dağılımlarda medyan ve yüzdek değerleri verilmiştir. Anlamlılık sınırı olarak p<0.05 düzeyi kabul edilmiştir.
4. BULGULAR

4.1. Klinik Bulgular

Klinik bulgularda yaş, cinsiyet gibi hastalara ait demografik değişkenler ile lezyonun yerleşim yeri ve ön tanıları gibi olgulara ait veriler incelenmiştir.

4.1.1. Periferal Dev Hücreli Granuloma Olgularının Klinik Bilgileri

PDHG vakalarının klinik bilgileri ve ön tanıları Tablo 4.1'de gösterilmiştir. Bu tabloda olguların yaş, cinsiyet, lezyonun ağız içi yerleşim bölgesi ve cerrahi öncesi klinik ön tanıları yer almaktadır.

Periferal dev hücreli granüloma vakaları için ortalama yaş 44.2 yıl olarak bulunmuştur. Bu grupta genç hasta 8, en yaşlı hasta ise 85 yaşındaydı. Hastalardan üçü 10 yaşın altında, diğerlerinin tamamı ise 30 yaşın üzerindeydii.

Cinsiyet dağılımı incelendiğinde olguların 14'ünün (%70) kadın, 6'sının (%30) erkek olduğu görülmüştür. Buna göre kadın-erkek dağılımı 2:1 oranından fazla olduğu dikkat çekmektedir.

Lezyonların lokalizasyonu incelendiğinde olguların 15'inin (%75) mandibulada, 5'inin (%25) ise maksillada lokalize olduğu gözlenmiştir. Üst çenede görülen olguların %60'ının anterior bölgede, %40'ının posterior bölgede olduğu ortaya çıkmıştır. Alt çenede görülen olguların ise %46'sının kesici-kanın bölgesinde, %54'ünün ise premolar- molar bölgede ortaya çıktığı gözlenmiştir. Ayrıca maksillada görülen iki vakanan dişlerden bağımsız olarak ön bölge dişsiz alveol kretinde ortaya çıktığı görülmüştür.

Cerrahi öncesi en çok verilen klinik ön tanı "periferal dev hücreli granüloma"idi. Periferal dev hücreli granülomadan sonra en çok verilen klinik ön tanıların sırasıyla periferal ossifiye fibroma ve pyojenik granüloma olduğu görülmüştür.
Tablo 4.1. PDHG olgularının klinik bilgileri ve ön tanıları

<table>
<thead>
<tr>
<th>Olgu No</th>
<th>Cinsiyet</th>
<th>Yaş</th>
<th>Lokalizasyon</th>
<th>Ön Tanı</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>39</td>
<td>Mandibula, anterior bölge</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>64</td>
<td>Maksilla, sağ molar bölge</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>9</td>
<td>Mandibula, 32 ve 33 nolu dişler arası</td>
<td>Dev hücreli tümör</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>41</td>
<td>Mandibula, 42 ve 43 dişler arası</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>36</td>
<td>Mandibula, sol molar bölge</td>
<td>Dev hücreli granüloma</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>56</td>
<td>Mandibula, sol 2. molar dişin distalı ve linguali</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>65</td>
<td>Mandibula dişeti</td>
<td>Yassı epitel hücreli karsinoma</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>47</td>
<td>Mandibula, 43 nolu dişin linguali</td>
<td>Pyojenik granüloma</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>8</td>
<td>Maksilla-sağ 1. molar dişin vestibülü</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>34</td>
<td>Mandibula, sağ molar bölge</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>9</td>
<td>Mandibula, sol premolar bölge</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>85</td>
<td>Maksilla, sağ anterior dişsz kret tepesi</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>31</td>
<td>Maksilla, sağ lateral kesici dişin vestibülü</td>
<td>Pyojenik granüloma</td>
</tr>
<tr>
<td>14</td>
<td>K</td>
<td>41</td>
<td>Mandibula, sol 2. molar dişin disto-linguali</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>70</td>
<td>Maksilla, anterior dişsz kret tepesi</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>16</td>
<td>E</td>
<td>47</td>
<td>Mandibula, 43 ve 44 nolu dişler arası</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>37</td>
<td>Mandibula, 44 ve 45 nolu dişlerin linguali</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td>53</td>
<td>Mandibula, 42 nolu dişin kök apeeksi bölgesi</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>19</td>
<td>E</td>
<td>61</td>
<td>Mandibula, sol premolar bölge</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>20</td>
<td>K</td>
<td>51</td>
<td>Mandibula, sol molar bölge</td>
<td>-</td>
</tr>
</tbody>
</table>
4.1.2. Periferal Ossifiye Fibroma Olgularının Klinik Bilgileri

Periferal ossifiye fibroma vakalarının klinik bilgileri ve cerrahi öncesi ön tanıları Tablo 4.2'de yer almaktadır. Bu tabloda olguların yaş, cinsiyet, lezyonun ağzı içi yerleşim bölgesi ve cerrahi öncesi klinik ön tanıları yer almaktadır.

POF olgularına ait veriler inceleyendiğinde olguların en gençinin 12 yaşında, en yaşlısının ise 68 yaşında olduğu görülmektedir. Periferal ossifiye fibroma vakaları için ortalama yaş 42.9 yıl olarak bulunmuştur.

Olgular cinsiyet dağılımına göre inceleyendiğinde, periferal dev hücreli granüloma olguları ile benzer şekilde olguların 14'ünün (%70) kadın, 6'sının (%30) erkek olduğu ortaya çıkmıştır.

Lezyonların ağzı içi yerleşim yeri incelendiğinde olguların 12'sinin (%60) maksillada, 8'inin (%40) ise mandibulada yer aldığı görülmüştür. Maksillada yer alan olguların 8'inin (%66.7) anterior bölgede, 4'ünün (%33.3) ise posterior bölgede yer aldığı görülmüştür.

Mandibulada yer alan POF olgularının 5'inin (%62.5) anterior bölgede, 3'ünün (%37.5) ise posterior bölgede yer aldığı gözlenmiştir. Posterior mandibulada görülen bir olgunun dişsiz alveol kretinde ortaya çıktığı görülmüştür.

Periferal ossifiye fibroma olgularının klinik ön tanıları incelendiğinde en çok konulan ön tanıının %40 oranıyla "periferal ossifiye fibroma"olduğu görülmüştür. POF dışında 4 olgu (%20) periferal dev hücreli granüloma tanısı almıştır. Diğer olguların ise gingival hiperplazi, travmatik fibroma, pyojenik granüloma gibi tanılar aldığı görülmüştür.
<table>
<thead>
<tr>
<th>Olgu No</th>
<th>Cinsiyet</th>
<th>Yaş</th>
<th>Lokalizasyon</th>
<th>Ön Tanı</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>61</td>
<td>Maksilla, sağ molar bölge</td>
<td>Periferal ossifiye Fibroma</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>43</td>
<td>Maksilla, anterior bölge</td>
<td>Periodontal kist</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>64</td>
<td>Mandibula, anterior bölge</td>
<td>İrritatif gingival hiperplazi</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>46</td>
<td>Mandibula, kesici dişlerin vestibülü</td>
<td>Periferal dev hücreli granülo ma</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>15</td>
<td>Maksilla, anterior bölge</td>
<td>Gingival hiperplazi</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>54</td>
<td>Mandibula, posterior alveol kreti üzerinde</td>
<td>Travmatik fibroma</td>
</tr>
<tr>
<td>7</td>
<td>K</td>
<td>54</td>
<td>Mandibula, sağ kesici ve kanin dişlerin linguali</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>8</td>
<td>E</td>
<td>49</td>
<td>Maksilla, sol molar dişlerin vestibülü</td>
<td>Periferal dev hücreli granüloma</td>
</tr>
<tr>
<td>9</td>
<td>K</td>
<td>35</td>
<td>Mandibula, anterior bölge</td>
<td>Pyojenik granülo ma</td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>24</td>
<td>Mandibula, sol 1. molar bölge</td>
<td>Fibrotik gingival hiperplazi</td>
</tr>
<tr>
<td>11</td>
<td>K</td>
<td>68</td>
<td>Mandibula, 2. molar dişin vestibülü</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>12</td>
<td>E</td>
<td>18</td>
<td>Maksilla, 25 ve 26 nolu dişler arası</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>13</td>
<td>K</td>
<td>12</td>
<td>Maksilla, 22 ve 23 nolu dişler arası</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>40</td>
<td>Mandibula, anterior bölge</td>
<td>Ossifiye fibroma, travmatik fibroma</td>
</tr>
<tr>
<td>15</td>
<td>K</td>
<td>35</td>
<td>Maksilla, 22 ve 23 nolu dişlerin vestibül ve palatinali</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>E</td>
<td>39</td>
<td>Maksilla, 12 ve 13 dişler arası</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td>58</td>
<td>Maksilla, molar bölge</td>
<td>Periferal dev hücreli granülo ma</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td>49</td>
<td>Maksilla, anterior bölge</td>
<td>Periferal ossifiye fibroma</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>40</td>
<td>Maksilla, 23 nolu diş bölgesi</td>
<td>Periferal dev hücreli granülo ma</td>
</tr>
<tr>
<td>20</td>
<td>E</td>
<td>54</td>
<td>Maksilla, 13 ve 14 nolu dişler arası</td>
<td>Periferal ossifiye fibroma</td>
</tr>
</tbody>
</table>
4.2. Histolojik Bulgular

4.2.1. PDHG ve POF Olgularının Ortalama İmmünoreaktivite Skorları

Araştırmada mikroskobik incelemede 400x büyütmede önce rastgele dört alan seçilerek her bir alan için hesaplanan boyama yüzdesi ve boyanma şiddeti çarpılarak her bir alan için İmmünoreaktivite Skoru (İRS) değeri bulundu. Daha sonra ise bu dört alana ait immunoreaktivite skorları ortalaması hesaplanarak her bir olgunun immünreaktivite skoru bulundu. PDHG olgularına ait immünreaktivite skorları Tablo 4.3'de yer almaktadır.

Tablo 4.3. PDHG olgularının ortalama immunoreaktivite skorları (İRS)

<table>
<thead>
<tr>
<th>Olgu No</th>
<th>IL-1 dh</th>
<th>IL-1 sh</th>
<th>IL-6 dh</th>
<th>IL-6 sh</th>
<th>IL-17 dh</th>
<th>IL-17 sh</th>
<th>TNF dh</th>
<th>TNF sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.75</td>
<td>9.75</td>
<td>0.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12.25</td>
<td>12</td>
<td>2.5</td>
<td>0.75</td>
<td>3</td>
<td>3</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>9.75</td>
<td>9</td>
<td>1</td>
<td>0.75</td>
<td>3.5</td>
<td>2.75</td>
<td>6.75</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>0.5</td>
<td>0.25</td>
<td>1.5</td>
<td>0.75</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>9</td>
<td>2.75</td>
<td>0.5</td>
<td>6</td>
<td>4.5</td>
<td>5.75</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>11.25</td>
<td>10.5</td>
<td>5.25</td>
<td>3</td>
<td>2.25</td>
<td>1.25</td>
<td>5.25</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>10.5</td>
<td>10.5</td>
<td>2.5</td>
<td>2</td>
<td>1.5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
<td>6</td>
<td>2</td>
<td>0.5</td>
<td>2.75</td>
<td>1.25</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>11.25</td>
<td>11.25</td>
<td>3.75</td>
<td>0.75</td>
<td>4</td>
<td>2.75</td>
<td>8.25</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>9.75</td>
<td>8.25</td>
<td>3.25</td>
<td>1.25</td>
<td>3.5</td>
<td>6</td>
<td>5</td>
<td>1.75</td>
</tr>
<tr>
<td>11</td>
<td>10.5</td>
<td>8.25</td>
<td>2.25</td>
<td>1.25</td>
<td>2.25</td>
<td>2.5</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>12</td>
<td>7.5</td>
<td>6.75</td>
<td>2.25</td>
<td>0.75</td>
<td>3.75</td>
<td>1.5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>8.25</td>
<td>2</td>
<td>1.5</td>
<td>6.25</td>
<td>9.75</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>5.25</td>
<td>4.75</td>
<td>2.25</td>
<td>6.75</td>
<td>5</td>
<td>9</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>6.75</td>
<td>0.25</td>
<td>0.25</td>
<td>1.25</td>
<td>2</td>
<td>3.75</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0.25</td>
<td>2.25</td>
<td>1.5</td>
<td>5.25</td>
<td>1.75</td>
</tr>
<tr>
<td>17</td>
<td>6.75</td>
<td>6</td>
<td>0.25</td>
<td>0.25</td>
<td>1.75</td>
<td>1.75</td>
<td>6</td>
<td>1.5</td>
</tr>
<tr>
<td>18</td>
<td>4.75</td>
<td>2.75</td>
<td>1.75</td>
<td>0.5</td>
<td>1.75</td>
<td>1</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>2.75</td>
<td>2.25</td>
<td>2</td>
<td>3.5</td>
<td>2</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>11</td>
<td>0.75</td>
<td>0.25</td>
<td>7</td>
<td>3.5</td>
<td>5.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>

dh: dev hücre, sh: stromal hücre
PDHG lezyonlarında inflamatuar sitokinlerin ekspresyonları hem çok çekirdekli dev hücrelerde (dh) hem de stromal hücrelerde (sh) incelenirken POF olgularında stromal hücrelerde inflamatuar sitokin ekspresyonları hesaplandı. POF olgularına ait immünoreaktivite skorları Tablo 4.4'de yer almaktadır.

Tablo 4.4. POF olgularının ortalama immünoreaktivite skorları (İRS)

<table>
<thead>
<tr>
<th>Olgu No</th>
<th>IL-1 (sh)</th>
<th>IL-6 (sh)</th>
<th>IL-17 (sh)</th>
<th>TNF (sh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>1.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>1.75</td>
<td>3.5</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td>0.25</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>2.25</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>1.5</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7.75</td>
<td>1.25</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3.75</td>
<td>0.5</td>
<td>3.75</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.25</td>
<td>2.25</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1.5</td>
<td>1.75</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>9.5</td>
<td>1.25</td>
<td>2.75</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>11.25</td>
<td>5.25</td>
<td>7.25</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>8.25</td>
<td>3.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>3</td>
<td>3.75</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>11.25</td>
<td>1.25</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>16</td>
<td>2.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>4.5</td>
<td>5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>11</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>8.25</td>
<td>2.5</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1.5</td>
<td>1.25</td>
<td>1.25</td>
<td>1</td>
</tr>
</tbody>
</table>

sh: stromal hücre

4.2.2. PDHG Olgularında Çok Çekirdekli Dev Hücreler ve İğsi Stromal Hücrelerde İnflamatuar Sitokin Ekspresyonu

Araştırımızda ayrıca PDHG olgularında çok çekirdekli dev hücreler ile stromal hücreler IL-1, IL-6, IL-17 ve TNF-α inflamatuar sitokin ekspresyonu açısından karşılaştırılmıştır. PDHG olgularında dev hücrelerde ve stromal hücrelerde IL-1 ekspresyonu...
ekspresyonuna ait İRS değerleri normal dağılım gösterdiği için bağımsız örnekler t testi ile incelenmiştir. IL-6, IL-17 ve TNF-α ekspresyonuna ait İRS değerleri ise normal dağılım göstermediği için Mann-Whitney U Testi ile analiz edilmiştir.

PDHG olgularında dev hücrelerde ve stromal hücrelerde IL-1 ekspresyonu bağımsız örnekler t testi ile incelenmiştir. Buna göre PDHG olgularında dev hücrelerde sitokin ekspresyonu ortalama İRS değeri 8.175 iken stromal hücrelerde 7.500 olarak ortaya çıkmıştır. Şekil 4.1.'de PDHG olgusunda IL-1β' nin hem dev hücrelerde hem de stromal hücrelerde yaygın ve kuvvetli pozitiflik gösterdiği görülmektedir.

Şekil 4.1. Periferal dev hücreli granüloma olgusunda IL-1β ile dev hücreler ve stromal hücrelerde yaygın ve kuvvetli pozitiflik (x400).

PDHG olgularında çok çekirdekli dev hücreler ile stromal hücrelerde IL-1 ekspresyonu bakımından anlamlı fark olup olmadığını incelemek için bağımsız örnekler t testi yapılmıştır. Bu test sonucuna göre PDHG olgularında çok çekirdekli dev hücreler ile stromal hücrelerde IL-1 ekspresyonu bakımından istatistiksel açıdan anlamlı bir farklılık görülmemiştir (p=0.506).
PDHG olgularında çok çekirdekli dev hücrelerde ve iğsi şekilli stromal hücrelerde IL-6, IL-17 ve TNF-α ekspresyonuna ait ortalama İRS değerleri non-parametrik dağılım göstermiştir. PDHG olgularında çok çekirdekli dev hücrelerde ve iğsi stromal hücrelerde IL-6, IL-17 ve TNF-α ekspresyonu medyan değerleri Tablo 4.5' de yer almaktadır.

Tablo 4.5. PDHG olgularında dev hücrelerde ve iğsi stromal hücrelerde İRS medyan değerleri

<table>
<thead>
<tr>
<th></th>
<th>PDHG Dev Hücreler (n=20)</th>
<th>PDHG Stromal Hücreler (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>2.1250*</td>
<td>0.750</td>
</tr>
<tr>
<td>IL-17</td>
<td>2.8750</td>
<td>2.000</td>
</tr>
<tr>
<td>TNF-α</td>
<td>5.1250*</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Dev hücreler ile stromal hücreler arasında istatistiksel olarak anlamlı farklılık (p<0.05)

PDHG olgularında çok çekirdekli dev hücrelerde en yüksek IRS medyan değeri TNF-α'da (İRS:5.1250) ortaya çıkarken bunu sırasıyla IL-17 (İRS:2.8750) ve IL-6 (İRS:2.1250) izlemiştir. PDHG olgularında iğsi stromal hücrelerde ise en yüksek sitokin ekspresyonu IL-17'de (İRS:2.000) görülürken bunu sırasıyla TNF-α (İRS:1.000) ve IL-6 (İRS:0.750) izlemiştir.

PDHG olgularında çok çekirdekli dev hücrelerde IL-6 ekspresyonu İRS medyan değeri 2.1250 iken stromal hücrelerde 0.750 olarak hesaplanmıştır. Şekil 4.2' de PDHG olgusunda IL-6 ile dev hücreler zayıf pozitiflik stromal hücrelerin negatif olduğu görülmektedir.
Şekil 4.2. Periferal dev hücreli granüloma olgusunda IL-6 ile dev hücrelerde zayıf pozitiflik mevcut olup stromal hücreler negatifir (x400).

PDHG olgularında çok çekirdekli dev hücrelerde IL-17 ekspresyonu İRS medyan değeri 8.750 iken stromal hücrelerde 2.000 olarak hesaplanmıştır. Şekil 4.3’te POF olgusunda IL-17 ile dev hücrelerde ve stromal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon görülmektedir.

Şekil 4.3. Periferal dev hücreli granüloma olgusunda IL-17 ile dev hücrelerde ve stromal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon (x400).
PDHG olgularında çok çekirdekli dev hücrelerde TNF-α ekspresyonu İRS medyan değeri 5.1250 iken stromal hücrelerde 1.000 olarak hesaplanmıştır. Şekil 4.4’de PDHG olgusunda TNF-α ile dev hücrelerde zayıf-orta şiddette, stromal hücrelerin bir kısmında zayıf pozitiflik izlenmektedir.

![Sekil 4.4. Periferal dev hücreli granüloma olgusunda TNF-α ile dev hücrelerde zayıf-orta şiddette, stromal hücrelerin bir kısmında zayıf pozitiflik (x400).](image)

PDHG olgularında çok çekirdekli dev hücrelerde ve iğiş stromal hücrelerde IL-6, IL-17 ve TNF-α ekspresyonu bakımından gruplar arasında farklılık olup olmadığını analiz etmek için Mann-Whitney U Testi yapılmış olup test sonuçları Tablo 4.6'da gösterilmiştir.

Bu tabloya göre PDHG olgularında çok çekirdekli dev hücreler ile stromal hücreler arasında IL-17 bakımından anlamlı fark görülmemiştir (p=0.201). PDHG olgularında çok çekirdekli dev hücrelerde ile stromal hücreler arasında IL-6 bakımından anlamlı fark ortaya çıkmıştır (p=0.014). Yine aynı şekilde TNF-αekspresyonu açısından da çok çekirdekli dev hücrelerde ile stromal hücreler arasında anlamlı
farklılık ortaya çıkmıştır (p=0.00). Farkın kaynağı incelendiğinde PDHG olgularında IL-6 ve TNF-α sitokin ekspresyonunun çok çekirdekli dev hücrelerde stromal hücrelere göre anlamlı düzeyde yüksek olduğu gözlenmektedir.

Tablo 4.6. PDHG olgularında dev hücre ve iğsi stromal hücre sitokin ekspresyonu
Mann-Whitney U testi sonuçları

<table>
<thead>
<tr>
<th>Ho Hipotezi</th>
<th>Anlamlılık Düzeyi</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 dağılımı gruplar için aynıdır</td>
<td>0.014*</td>
</tr>
<tr>
<td>IL-17 dağılımı gruplar için aynıdır</td>
<td>0.201</td>
</tr>
<tr>
<td>TNF-α dağılımı gruplar için aynıdır</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

(p<0.05 için anlamlı farkı göstermektedir.)

4.2.3. PDHG ve POF Olgularında Stromal Hücrelerde İnflamatuar Sitokin Ekspresyonu

PDHG ve POF olgularında IL-1, IL-6, TNF-α ve IL-17 stromal sitokin ekspresyonunun ait ortalama İRS değerleri nonparametrik dağılım göstermesi nedeniyle incelemede non-parametrik testler kullanılmıştır. PDHG ve POF olgularında IL-1, IL-6, TNF-α ve IL-17 stromal sitokin ekspresyonu İRS medyan değerleri Tablo 4.7’dedir yer almaktadır.

PDHG olgularında stromal sitokin ekspresyonu İRS incelediğinde en yüksek İRS değeri IL-1’de (İRS: 8.250), en düşük İRS değeri ise IL-6’da (İRS: 0.750) ortaya çıktığı görülmektedir. PDHG olgularında IL-17 İRS değeri 2.000, TNF-α İRS değeri ise 1.000 olarak hesap edilmiştir.
POF olgularında ise en yüksek İRS değeri IL-1' de (İRS: 8.250), en düşük İRS değeri ise TNF-α' da (İRS: 0.375) ortaya çıktığı görülmektedir. POF olgularında IL-17 İRS değeri 4.375, IL-6 İRS değeri ise 1.250 olarak bulunmuştur.

Tablo 4.7. PDGH ve POF olgularında stromal hücrelerde İRS medyan değerleri

<table>
<thead>
<tr>
<th></th>
<th>PDHG (n=20)</th>
<th>POF (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1</td>
<td>8.250</td>
<td>8.250</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.750</td>
<td>1.250</td>
</tr>
<tr>
<td>IL-17</td>
<td>2.000</td>
<td>4.375*</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.000*</td>
<td>0.375</td>
</tr>
</tbody>
</table>

*PDHG ve POF olguları arasında istatistiksel olarak anlamlı farklılık (p<0.05)

POF olgularında IL-1β stromal hücrelerde sitokin ekspresyonu İRS medyan değerinin PDHG olgularındakiler ile eşit olduğu görülmektedir. PDHG olgusunda olduğu gibi (Şekil 4.1), POF olgusunda da IL-1β ile stromal hücrelerde yaygın ve kuvvetli pozitiflik görülmektedir (Şekil 4.5).

PDHG olgularında stromal hücrelerde IL-6 ekspresyonu 0.750 iken POF olgularında stromal hücrelerde IL-6 ekspresyonu 1.250 olarak hesaplanmıştır. PDHG olgusunda stromal hücrelerde negatif ekspresyon görülürken (Şekil 4.2) POF olgusunda stromal hücrelerde IL-6 ekspresyonunun zayıf-orta şiddette pozitiflik gösterdiği görülmektedir (Şekil 4.6).
Şekil 4.5. Periferal ossifiye fibroma olgusunda IL-1β ile mezenşimal hücrelerde yaygın ve kuvvetli ekspresyon (x400).

Şekil 4.6. Periferal ossifiye fibroma olgusunda IL-6 ile mezenşimal hücrelerin bir kısmında zayıf –orta şiddette pozitiflik (x400).
PDHG olgularında stromal hücrelerde IL-17 ekspresyonu İRS medyan değeri 2.000 iken POF olgularında stromal hücrelerde IL-17 ekspresyonu İRS medyan değeri 4.375 olarak bulunmuştur. Şekil 4.7'de POF olgusunda IL-17 ile stromal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon görülmektedir.

Şekil 4.7. Periferal ossifiye fibroma olgusunda IL-17 ile mezenşimal hücrelerin bir kısmında zayıf-orta şiddette ekspresyon (x400).

PDHG olgularında stromal hücrelerde TNF-α ekspresyonu İRS medyan değeri 1.000 iken POF olgularında stromal hücrelerde TNF-α ekspresyonu İRS medyan değeri 0.375 olarak bulunmuştur. Şekil 4.8' de POF olgusunda TNF-α ile seyrek stromal hücrelerde zayıf ekspresyon ile görülmektedir.

POF olgularında ise IL-17 ekspresyonu İRS medyan değeri 4.375 iken TNF-α ekspresyonu 0.375 olarak ortaya çıkmıştır. PDHG olguları ile karşılaştırıldığında POF olgularında IL-17 ekspresyonunun daha yüksek düzeyde olduğu, bunun aksine ise TNF-α ekspresyonunun ise daha düşük düzeyde kaldığı görülmektedir.
Şekil 4.8. Periferal ossifiye fibroma olgusunda TNF-α ile seyrek mezenşimal hücrede zayıf ekspresyon (x400).

PDHG ve POF olguları arasında IL-1, IL-6, TNF-α ve IL-17 sitokinlerin stromal ekspresyonu bakımdan iki grup arasında anlamlı fark olup olmadığını analiz etmek için yapılan Mann-Whitney U Testi sonuçları Tablo 4.8' de gösterilmiştir.

Tablo 4.8. PDHG ve POF olgularında stromal hücre sitokin ekspresyonu Mann-Whitney U testi sonuçları

<table>
<thead>
<tr>
<th>Ho Hipotezi</th>
<th>Anlamlılık Düzeyi</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 stromal hücre dağılımı gruplar için aynıdır</td>
<td>0.799</td>
</tr>
<tr>
<td>IL-6 stromal hücre dağılımı gruplar için aynıdır</td>
<td>0.157</td>
</tr>
<tr>
<td>IL-17 stromal hücre dağılımı gruplar için aynıdır</td>
<td>0.026*</td>
</tr>
<tr>
<td>TNF-α stromal hücre dağılımı gruplar için aynıdır</td>
<td>0.002*</td>
</tr>
</tbody>
</table>

(*p<0.05 için anımlı farkı göstermektedir.)
Bu tabloya göre her iki olgu grubu arasında IL-1 ve IL-6 sitokinlerin stromal ekspresyonu açısından anlamlı fark görülmezken, IL-17 ve TNF-α bakımından anlamlı fark ortaya çıkmıştır. POF olgularında IL-17 sitokin stromal ekspresyonu PDHG olgularına göre anlamlı düzeyde yüksek bulunmuştur (p=0.026). Bunun aksine PDHG lezyonlarında ise TNF-α ekspresyonu anlamlı düzeyde yüksek bulunmuştur (p=0.02).
5. TARTIŞMA

Çenelerin dev hücreli lezyonları diğer çene lezyonlarından 1953 yılında Jaffe’nin "dev hücreli reperatif granülomalar" terimini kullanmasıyla ayrılmıştır. O dönemlerde çenelerde görülen bu lezyonlar yaşamın ilk iki dekata ve daha sıklıkla kadınlarda (yaklaşık 2:1) bulunmuştur. Araştırmamızda literatürle uyumlu olarak periferal dev hücreli granüloma olgularının %70' inin kadın, %30'unun erkek olduğu görülmektedir.

PDHG’ ler maksillaya göre mandibulada daha sık ortaya çıkmaktadır. Jan de Lange ve ark. na göre bu lezyonlar mandibulada maksillaya göre iki kez daha sık ortaya çıkarlar. Araştırmamızda bi literatür bilgileri ile uyumlu olarak lezyonların %75'i mandibulada, %25'i maksillada ortaya çıkmıştır. PDHG lezyonları mandibulananın ön bölgesinde daha yaygıındır, sıklıkla orta hat geçişindedir. Bizim araştırmamızda da alt
çenede görülen olguların %46'sının anterior mandibulada olduğu görülmektedir. Ayrıca maksillada görülen olguların da %60'ı ön bölgesinde ortaya çıkmıştır.

Oral kavite epülleri içinde tüm gingival lezyonların %2-9' unu POF vakalarının oluşturduğu tahmin edilmektedir.6 POF tüm reaktif hiperplastik lezyonların içinde pyojenik granüloma ve dev hücreli granüloma lezyonlarından sonra en yaygın üçüncü lezyondur.156

POF vakaları hayatın herhangi bir döneminde teşhis edilebilmektedir. Bizim çalışmamızda POF olgularının en gencinin 12 yaşında, en yaşının ise 68 yaşında olduğu görülmüş ve ortalama yaş 42.9 yıl olarak bulunmuştur. Fakat çoğu rapora göre lezyonların çoğunluğunu 2. dekatta ortaya çıkmakta, daha sonraki yıllarda insandı azalmaktadır.157 Cundiff158 lezyonun 5-25 yaş aralığında prevalansı olduğunu ve 13 yaşında pik yaptığına rapor etmiştir.

POF da PDHG gibi kadınların daha çok etkilendiği bir lezyondur. Literatürde POF lezyonlarının üçte ikisinin kadınlarda, özellikle yaşamın ikincisi dekata ortaya çıktığı rapor edilmektedir.35 Kadın erkek oranı 2:1'den 3:1'e kadar değişebilmektedir.159 Bizim çalışmamızda POF olgularının %70'ünün kadın, %30'unun erkek olması literatür bilgileriyle uyumluluk göstermektedir. Kadın prevalansı özellikle östrojen ve progestron gibi hormonal etkiler ile ilişkidir.36 POF un insandı yaşamın 2 dekata yüksek olması hormon seviyesindeki değişikliklerin puberta ve hamilelik döneminde gingivitisin oluşmasını artırmamasına bağlı olabilir.37

POF lezyonları PDHG lezyonlarının aksine daha çok maksiller kemikte ortaya çıkar.160 Khan ve ark.16 na göre POF lezyon vakalarının %60'tan fazlası maksiller kemikte, bunların %50' si de ön bölgededir. Kohli ve ark.162 da benzer şekilde bu lezyonların yaklaşık %60'ının maksillada ortaya çıktığını, tüm vakaların %50'den daha fazlasının kesici ve kanin bölgesini etkilediğini ve daha çok da interdental papil
bölgesinde yerleşimli olduğunu bildirmişlerdir. Çalışmamızda POF olgularının % 60'ının maksillada, %40'ının ise mandibulada yer aldığı görülmuştur. Maksillada yer alan olguların ise %66.7' si anterior bölgede yer almıştır. Çalışmamızın bu sonuçları literatürle tam uyumluluk göstermektedir.

Bu çalışmada öncelikle PDHG lezyonlarında inflamatuar sitokinler olan IL-1, IL-6, IL-17 ve TNF-α ekspresyonu hem çok çekirdekli dev hücrelerde hem de iğsi şekilli stromal hücrelerde immünohistokimyasal olarak incelenmiştir. PUBMED tabanlı literatür tarama sonuçlarımızına göre bu çalışma PDHG lezyonlarında IL-17'nin ekspresyonunun immünohistokimyasal olarak saptanması ile ilgili ilk çalışmadır. Bu çalışma ile periodontal dokularda varlığı ortaya konulan ve periodontitinin patogenezinde rol aldığı kanıtlanan IL-17 ilk kez çenelerde görülen PDHG ve POF lezyonlarında immünohistokimyasal olarak incelenmiştir.

TNF-α, IL-6 ve IL-1β' nin osteolitik lezyonlarda ve patolojik kemik rezorbe edici rolü kanıtlanmıştır.8 Bu osteoklastojenik sitokinler, uzun kemiklerin dev hücreli tümörlerinde in-vivo ve in-vitro bazı çalışmalar ile çeşitli metotlar kullanılarak araştırılmıştır.9 TNF-α ekspresyonu aynı zamanda çenelerinde dev hücreli tümör bulunan hastalarda çalışılmıştır.11 De Souza ve ark.10 2005 yılında çenelerinde santral dev hücreli lezyon bulunan hastaların dolaşımdaki lenfosit ve monositlerinde TNF-α ekspresyonunu değerlendirmişler ve TNF-α ekspresyonunun CD4 (+) T hücrelerinde arttığını, CD68 monositlerde azaldığını bulmuşlardır. Araştırmacılar bunu monositlerde artan IL-10'un makrofajlarda IL-1, IL-6 ve TNF-α üretimini inhibe ettiği ve bu nedenle TNF-α hücrelerinin sıklığının azalmasını IL-10 ekspresyonunun yüksekliği ile açıklamışlardır.10
Bu araştırmada PDHG olgularında IL-1, IL-6, IL-17 ve TNF-α ekspresyonu dev hücrelerde işi stromal hücrelere göre immünohistokimyasal olarak artış göstermiştir. Bu artış IL-6 ve TNF-α' da anlamlı düzeyde yüksek bulunmuştur.

PDHG lezyonlarında dev hücreler ve stromal hücrelerde TNF-α, IL-6 ve IL-1β ekspresyonunu ilk olarak Papanicolaou ve ark.14 2012 yılında yaptıkları çalışmada ortaya koymuşlardır. Onların çalışmalarında TNF-α, IL-6 ve IL-1β ekspresyonu çenelerin periferal ve santral dev hücreli tümörlerinde immünohistokimyasal olarak incelenmiş hem periferal hem de santral dev hücreli granülomalarda TNF-α, IL-6 ve IL-1β ekspresyonu dev hücrelerde stromal hücrelere göre önemli şekilde yüksek bulunmuştur. Bizim çalışmamızda da Papanicolaou ve ark.14’nin çalışmasının sonuçlarına benzer şekilde PDHG olgularında IL-6 ve TNF-α dev hücrelerde stromal hücrelere göre anlamlı şekilde yüksek bulunmuştur. Aynı şekilde yaptığımız çalışmada IL-1 ekspresyonu dev hücrelerde stromal hücrelere göre yüksek bulunmuştur fakat bu anlamlı düzeyde değildir.

Gamberi ve ark.163 yaptıkları çalışmada immünohistokimya ve real-time quantitative PCR tekniği kullanarak yüksek biyolojik agresiflik gösteren DHT'lerde iki hücre arasında önemli farklılık olmadan IL-6' nın ekspresyonunun arttığını bulmuşlardır. Atkins ve ark.164 incelediği DHT' lerde stromal hücrelerde TNF-α, IL-1 ve IL-6 mRNA ekspresyonunun arttığını gözlemlemişlerdir. Araştırmaımızın sonuçları literatürle uyumlu olarak PDHG lezyonlarında dev hücrelerde stromal hücrelere göre proinflamatuar sitokin ekspresyonunun yüksek olduğunu ortaya koymaktadır.

Çalışmamızda PDHG lezyonlarında dev hücrelerde işi stromal hücrelere göre TNF-α ve IL-6 ekspresyonu anlamlı olarak yüksek bulunmuştur. IL-6 ve TNF-α' nın ekspresyonunun özellikle çok çekirdekli dev hücrelerde yüksek olmasının nedeni bu sitokinlerin osteoklastogenezis üzerindeki etkili rolü ile ilişkili olabilir.
Amaral ve ark.11 nın yaptıkları çalışmadada PDHG ve SDHG lezyonlarında osteoklastların terminal farklılaşması için gerekli olan aktive edilmiş T hücre nükleer faktörü, sitoplazmik 1 (NFAT-c1) transkripsiyonunun arttığı görülmüştür. Bu yazarlar çenelerde dev hücreli lezyonların gelişiminin çok çekirdekli dev hücrelerin nükleuslarındaki aktive edilmiş T hücre nükleer faktörü (NFAT)'ı aşırı ekspresyonu ile düzenlendiğini savunmuşlardır.

Osteoklastogenezisin TNF-α ve TGF-β arasındaki karşılıklı koordineli etkileşime bağlı olabileceği görülmektedir.165 Çünkü TNF-α, TGF-β yokluğunda NFAT ekspresyonunun artışını uyarmaz. Bu yüzden TNF-α tarafından osteoklastların farklılaşmasını, sitoplazmik NFAT seviyesinin artışı uyaran TGF-β'ye bağlandı.166 Matos ve ark.13 yaptığı çalışmada dev hücreli lezyonlarda TGF-β ile TNF-α'ın karşılıklı etkileşimlerin osteoklastogenezis ve kemik rezorbsiyonunda önemli olabileceğiğini göstermiştir. Çünkü TGF-β yokluğunda TNF-α'ın NFAT ekspresyonunun artışını indüklemediği görülmüştür.

TNF-α in-vitro olduğu kadar in-vivo olarak da osteoklastik kemik rezorbsiyonunun stimülasyonunun sorumludur.167 TNF-α ve IL-6 kemik rezorbsiyonunun düzenlenmesinde çok çekirdekli dev hücrelerde kritik bir rol oynayabilir. IL-6'nın kemikte ana kaynağı osteoblastik hücreler ve stromal hücreler olmasına karşın IL-6 kemikte osteoklastogenezis üzerinde etkilidir.8 IL-6 osteoklastları aktive eder ve kemik rezorbsiyonuna neden olur.74 IL-6 osteoblast ve synovial hücrelerden türeyn RANKL'in salınımını artırarak osteoklastogenezis indirekt olarak da artırabilir.75

Bu çalışmada IL-17 ekspresyon değerinin de diğer proinflamatuar sitokinlerle uyumlu olarak yüksek olduğu görülmektedir. Hatta şarıcı bir biçimde IL-17 ekspresyonunun IL-6 ekspresyonundan daha yüksek olarak seyrettiği de görülmektedir.
IL-17 ekspresyonu diğer proinflamatuar sitokinlerle uyumlu bir şekilde dev hücrelerde stromal hücrelere göre yüksek bulunmuştur fakat bu anlamlı düzeyde değildir.

Son yıllarda periodontal inflamasyonda IL-17'nin rolü ile ilgili çok detaylı çalışmalar yapılmıştır. IL-17' nin üzerindeki reseptör sinyalleriyle insan periodontal ligamentlerinde IL-23' ün ekspresyonunustimüle ettiği rapor edilmiştir. Diğer bir çalışma IL-17' nin insan periodontal ligamentlerinin migrasyonunu stimüle ettiği göstermiştir.

Literatürdeki son çalışmalar IL-17' nin RANKL ekspresyonunu artırarak kemik yıkımını artırdığını göstermektedir. Danping Lin ve ark. yaptığı çalışma IL-17' nin insan periodontal ligamentlerinde RANKL ekspresyonunu artırarak, OPG ekspresyonunu azaltarak düzenledğini göstermektedir. Üstelik RANKL ekspresyonunu artırıcı düzeydeki etkisi, OPG ekspresyonunu azaltıcı düzenleyici etkisinden daha önemlidir. Onların çalışmasında RANKL'ın artırılması ve OPG' nin azaltılmasında IL-17' nin en uygun konsantrasyonunun 50ng/ml olduğu görülmüştür. Bu önceki çalışmalarda da kronik periodontitisli hastaların dişeti oluğu sıvısında IL-17 konsantrasyonu yaklaşık olarak 50 ng/ml olarak ölçülmüştür. Sonuç olarak, insan periodontal ligamentlerinde RANKL’ in OPG’ ye oranı IL-17 tarafından önemli şekilde artmaktadır.

IL-17'nin diğer sitokinlerin üretimini artırarak osteogenezisi indirekt olarak da artırduğu bilinmektedir. Beklen ve ark. nin rapor ettiği göre IL-1, gingival fibroblastlardan IL-6 üretimi ve makrofajlardan IL-1β ve TNF-α üretimi uyarmaktadır. Hayashi ve ark. IL-17’ nin IL-6’ yi indükleyerek insan periodontal ligament hücrelerinin (hPDLCS) üretimini ve osteo/odontokaltogenezis stimule ettiği göstermiştir. Shibata ve ark. yaptığı çalışma IL-17’ nin, IL-6’ yi uyarmasıyla insan periodontal ligamentlerin MMP-1 üretimini uyardığını göstermektedir. IL-17’ nin
synovial fibroblastlarda ve gingival fibroblastlarla IL-6 ve IL-8 sekresyonunu stimüle ettiği görülmüştür.

Çalışmada IL-1 sitokin ekspresyonu hem PDHG ve hemde POF lezyonlarında eşit ve yüksek düzeyde bulunmuştur. Proinflamatur sitokinler içinde en yüksek düzeyde IL-1'in olması bu sitokinin bu lezyonların etyopatogenezindeki rolünü güçlü şekilde ortaya koymaktadır. IL-1' in periodontitisin patogenezinde önemli bir rol oynadığı bilinmektedir. Stashenko ve ark. 61 İL-1'in periodontitisli hastaların dişeti oluştu sıvısında yüksek bulunduğunu rapor etmiştir. Kwan ve ark. 8 IL-1β'nin osteoklastlar üzerindeki etkisini in-vitro olarak incelediği kadar rezorptif kapasitesini de artırduğu bildirmiştir. IL-1 ayrıca MMP-1 ve MMP-2'yi artırarak atışman yarısına yol açan periodontal ligament kollajenlerinin yıkımına yol açabilmektedir. Stashenko ve ark. 61 İL-1'in birçok farklı mekanizma ile PDHG ve POF lezyonlarının ortaya çıkmasında rol aldığını göstermektedir.

Bu çalışmada PDHG ve POF lezyonları arasında stromal IL-1 ve IL-6 ekspresyonu açısından anlamlı bir fark görülmemek, IL-17 ve TNF-α ekspresyonunda her iki olgu grubu arasında anlamlı fark ortaya çıkmıştır. IL-17 ekspresyonu POF lezyonlarında artış gösterirken, TNF-α ekspresyonu PDHG lezyonlarında artış göstermiştir.
Çalışmamıza, PDHG olgularında TNF-α'ın yüksek bulunması literatürde yapılan benzer çalışmalarla uyumluuk göstermektedir. Matos ve ark.2012 yılında cenelerin periferal ve santral dev hücre lezyonlarında TNF-α ekspresyonunu araştırmışlardır. Onların çalışmada TNF-α'nın immunohistokimyasal ekspresyon yoğunluğu skor 4 olarak gözlemlenmiş, ekspresyon oranı SDHG’lerde %40, PDHG’lerde %55 olarak bulunmuştur.

Amaral ve ark. SDHG ve PDHG lezyonlarında TNF-α mRNA ekspresyon miktarını hesaplamışlar, fakat iki lezyon arasında önemli bir fark bulunmamıştır. Resende ve ark. PDHG lezyonlarında daha yüksek TNF-α ekspresyonu gözlemlemişlerdir. Bu ekspresyon kemik doku olmayan ve yoğun inflamatuar infiltrasyon alanlarında daha yüksek olarak gözlemlenmiştir. Araştırmacılar göre bu bulgular PDHG lezyonlarının reaktif doğasını desteklemektedir. Inflamatuar cevabı tetikleyen lokal irritasyon faktörleri kemik rezorbsiyonundan daha çok anjiyogenezise katkıda bulunabilen TNF-α gibi sitokinlerin salınmasını sağlayarak bunu gerçekleştirebilmektedir.

Matos ve ark.’nın 2011 yılında yaptıkları çalışma bulguları PDHG lezyonlarında SDHG lezyonlarına göre proinflamatuar sitokinlerin yüksek olmasının nedeninin anjiyogenezis mekanizmasıyla olabileceğini görüşünü desteklemektedir. Zira onların yaptıkları çalışmada MVC (mikrovasküler sayım) analizi PDHG lezyonlarında SDHG lezyonlarna göre daha yüksek kan damarı sayısını göstermiştir. Bunun muhtemel açıklaması, PDHG lezyonlarının lokal irritasyon faktörlerinin tetiklediği IL-8, platelet kaynaklı büyüme faktörü (PDGF) ve transforme edici büyüme faktörü beta (TGF-β) gibi proanjiyogenik sitokinlerin yüksek salınması sonucu güçlü inflamatuar cevap ile karakterize reaktif bir süreç olmasıdır.
IL-17 ekspresyonu POF olgularında PDHG olgularına göre anlamlı düzeyde yüksek bulunmuştur. Periodontal dokularda IL-17 ekspresyonu ile ilgili çok sayıda çalışma yapılmış ve IL-17' nin periodontitisin patogenezinde rol aldığı kesinleşmiştir.

POF lezyonları PDHG lezyonlarına göre bol miktarda fibroblast içermektedir. PDL fibroblastları bir dizi kollajen matriks tiplerinin tamir ve bakımı için katılmaktadır. IL-17' nin POF lezyonlarında bol bulunan fibroblastlar üzerindeki etkileri IL-17 ekspresyonunun POF lezyonlarında PDHG lezyonlarına göre fazla olmasını nedeni olabilir.

IL-17 nin fibroblastlar üzerindeki etkileri ile ilgili son zamanlarda önemli çalışmalar yapılmıştır. Yan Wu ve ark.172 nin 2014 yılında yayınladığı çalışmasına göre IL-17' nin insan periodontal ligament (PDL) fibroblastlarının ekspresyonunu MMP-1'i artırarak düzenlediğini ve migrasyonu artırırdığını göstermiştir. IL-17A' nin periodontal yara iyilemesini düzenlemesini PDL fibroblastlarının proliferasyonundan ziyade migrasyonuyla kontrol ederek yaptığı ortaya koymuştur. IL-17A insan PDL fibroblastlarının migrasyonunu doğrudan olarak etkilemektedir. IL-17A' nin varlığında (1ng/ml-100ng/ml) PDL fibroblastlarının göçü önemli derecede artmaktadır. 1 ng/ml IL-17A ile fibroblastlarda hücre göçü önemli derecede artken maksimum migrasyon 10 ng/ml ile elde edilmiştir. Sonuç olarak IL-17A, PDL fibroblastlarındaki IL-17 reseptörleri aracılığıyla p38 MAPK ve NF-κB byollığının aktivasyonuyla MMP-1 ekspresyonunu indüksiz etkilemektedir ve bu hücre göçünün artmasıyla sonuçlanmaktadır.

POF lezyonlarında bol miktarda fibroblast bulunmaktadır. Kollajen fibriller bağ dokusunun tüm çeşitlerinde değişik miktarlarda yer alırlar ve en çok fibroblastlar tarafından sentezlenirler. IL-17' nin POF lezyonlarında baskın şekilde bulunan fibroblastlar tarafından sentezlenen kollojen matriksini yıkan MMP'lerin üretimini uyarması IL-17 ekspresyonunun POF lezyonlarında yüksek bulunmasını bir göstergesi...
olabilir. Çünkü IL-17, MMP-1 üretimini yalnızca direkt olarak değil, IL-6 üretimini artırarak dolaylı olarak da uyarmaktadır, buda periodontal ligament kollajenlerinin yıkımı ile sonuçlanmaktadır.172

Son dönemde birçok çalışma19,172,173 IL-17’nin insan periodontal ligamentlerinde IL-6 ve MMP-1 üretimini artırduğu göstermiştir. Beklen ve ark.19’ün rapor ettiğine göre IL-1, gingival fibroblastlardan IL-6 üretimini ve makrofajlardan IL-1β ve TNF-a üretimini uyarmaktadır. Shibata ve ark.173 yaptığı çalışma IL-1β ve TNF-α, IL-17’ den daha fazla MMP-1’i belirgin şekilde artırmaktadır. Bu sonucu göre IL-17, MMP-1 üzerindeki direkt düzenleyici etkisini daha az uygulamakta, asıl fonksiyonunu IL-1β ve TNF-α gibi diğer inflamatuar sitokinleri uyarmasıyla yapmaktadır. Bu sonuçlar IL-17’nin insan periodontal ligamentlerinde inflamatuar sitokinlerin ve MMP-1’in üretimini uyarmakta olduğunu ve bunun da inflamatuar cevabin artması ve periodontal ligamentlerde doku yıkımı ile sonuçlandığını göstermektedir.

Bu çalışma sonuçları periodontitisin patogenezinde rolü kanıtlanan IL-17’nin periodontal ligament kökenli olduğu düşünülen ve periodontal inflamasyonda ilişkili PDHG ve POF lezyonlarında varlığı ilkel kez ortaya koyması bakımından önemlidir. Bu çalışmanın sonuçlarına göre IL-17’nin PDHG ve POF lezyonlarının patogenezinde rolünün olduğunu söyleyebiliriz. Çalışmamızda IL-17 düzeyi ilginç olarak POF lezyonlarında daha yüksek düzeyde ortaya çıkmıştır. IL-17, POF lezyonlarında PDHG lezyonlarına göre fibroblastlar üzerindeki etkileri ile daha fazla rol alabilir.

IL-17’nin hem RANKL üzerinden osteoklastogenezis ve kemik yıkımı üzerinde hem fibroblast göcü, kollajen yıkımı gibi etkileri ile bağ dokusu üzerinde yıkıcı etkileri insan periodontal dokular üzerinde yapılan bir çok çalışma ile ortaya konmuştur.15-19,172,173 IL-17 hem direkt etkisi ile hem de diğer inflamatuar sitokinlerin etkisini artırarak periodontal inflamasyonda çok farklı roller üstlenebilmektedir. IL-17’
nin PDHG ve POF lezyonlarındaki rolleri ve etki mekanizmaları ile ilgili kesin yargısı bulunabilmek için daha çok sayıda ve etki mekanizmalarını açıklayacak nitelikte farklı çalışmalarla ihtiyaç olduğu açıklık olduğu açıktır.

Bu çalışma IL-1, IL-6, IL-17 ve TNF-α’nın hem PDHG hem de POF lezyonlarında büyüme procesine karışıklarını göstermekte, bu da daha önceki PDHG ve POF lezyonlarının benzer büyüme potansiyeline sahip olduğu görüşünü desteklemektedir. Ayrıca bu çalışma PDHG ve POF lezyonlarının gelişiminde proinflamatuar sitokinlerin pozitif sincir rolünü de göstermektedir.

PDHG ve POF gibi ağızda yaygın olarak görülen lezyonların etyopatogenezinin aydınlatılması bu lezyonlara neden olan etyolojik faktörlerin ortadan kaldırılması kadar, bu lezyonların tedavisi bakımından da önemlidir. PDHG ve POF gibi reaktif lezyonların geleneksel tedavisi cerrahi eksizyon ve küretajdır. Bununla birlikte literatürde kortikosteroid enjeksiyonu, kalsitonin ve IFN-α yi içeren alternatif tedaviler önerilmiştir.152

PDGH ve POF gibi reaktif enfamatuar hiperplazilerde cerrahi tedaviye alternatif olabilecek ya da cerrahi tedavi ile birlikte kullanılabilecek çeşitli tedavi yöntemleri ve ilaçlar geliştirilemesi için çalışmalar yapılmalıdır. PDGH ve POF lezyonlarında cerrahi tedavi hala tek seçenek olsa da cerrahi tedavi sonrasında lezyonun çıkarılmasını tam yapılamaması, tekrarlanan yaralanmalar ve lokal irritasyonun varlığına bağlı olarak literatürde değişen oranlarda nüksler görülebilmektedir.32,45

PDHG ve POF lezyonlarının etyopatogenezinin tam aydınlatılmasıyla geliştirilecek yeni yöntemler ve ilaçlar lezyonların ortaya çıkmasını engellemek, lezyonu tamamen tedavi etmek, lezyonun boyutunu azaltmak ve geriletmek ya da nüks oranını ve ihtimalini azaltmak gibi farklı stratejiler için kullanılabilir. Örneğin insan kaynaklı IL-17A antikorları RA, psöriazis ve üveitin tedavisi için geliştirilmiş ve
güzel sonuçlar alınmıştır.174 RA hastalığında IL-17' nin blokajı kemik ve kartilaj erozyonunu etkili bir şekilde önlemekte ve klinik semptomların şiddetini azaltmaktadır.175 Humanize anti-interlökin-17 (anti-IL-17) monoklonal antikor, çeşitli inflamatuvar bozuklukların ve romatoid artrit, psöriazis gibi diğer otoimmün hastalıkların tedavisinde kullanılmaktadır.176 Elde edilen bu sonuçlar sitokinlerden elde edilen antikorların çenelerde görülen PDHG ve POF gibi irritatif gingival hiperplazilerde de kullanılması için umut vermektedir.
6. SONUÇ VE ÖNERİLER

Çenelerde görülen PDHG ve POF lezyonlarında proinflamatuar sitokinlerin ekspresyonunu immünohistokimyasal olarak ortaya koymak amacıyla yapılan bu çalışmada aşağıdaki sonuçlara ulaşılmıştır:

1. IL-1 ekspresyonu PDHG olgularında hem dev hücrelerde hem de stromal hücrelerde yüksek düzeyde bulunmuştur. PDHG olgularında dev hücrelerle stromal hücreler arasında IL-1 ekspresyonu bakımından anlamlı bir fark görülmemiştir. POF olgularında da stromal IL-1 ekspresyon düzeyinin, PDHG olgularındaki stromal IL-1 ekspresyon düzeyi ile aynı olduğu ve dolayısıyla iki lezyon grubu arasında anlamlı bir farklılık olmadığı görülmüştür.

2. IL-6 ekspresyonu PDHG olgularında dev hücrelerde stromal hücrelere göre anlamlı düzeyde yüksek bulunmuştur. IL-6 stromal ekspresyon düzeyi bakımından PDHG ve POF lezyonları arasında anlamlı bir fark görülmemiştir.

3. TNF-α ekspresyonu PDHG olgularında dev hücrelerde stromal hücrelere göre anlamlı düzeyde yüksek bulunmuştur. TNF-α ekspresyonunun dev hücrelerde en yüksek düzeyde olduğu görülmüştür. Ayrıca PDHG olgularında stromal TNF-α düzeyi de POF olgularına göre yine anlamlı derecede yüksek bulunmuştur.

4. IL-17 ekspresyonu PDHG olgularında hem dev hücrelerde hem de stromal hücrelerde görülmüş fakat bu iki hücre grubu arasında IL-17 ekspresyonu bakımından anlamlı bir fark ortaya çıkmamıştır. POF olgularında stromal IL-17 ekspresyonu PDHG olgularındaki stromal IL-17 ekspresyon düzeyine göre anlamlı derecede yüksek bulunmuştur. Sonuç olarak POF lezyonlarında IL-17 ekspresyonunun oldukça yüksek düzeyde olduğu görülmüştür.
Bu çalışmanın sonuçlarına göre PDHG lezyonlarında dev hücrelerle stromal hücreler karşılaştırıldığında dev hücrelerde stromal hücrelere göre IL-6 ve TNF-α daha yüksek bulunmuştur. PDHG ile POF olguları karşılaştırıldığında ise IL-1 ekspresyonunun her iki olgu grubunda da aynı olduğu; IL-6 ekspresyonu bakımdan her iki grupta anlamlı düzeyde bir farklılık olmadığı; TNF-α ekspresyonunun PDHG olgularında, IL-17 ekspresyonunun ise POF olgularında daha yüksek olduğu görülmüştür.

Bu çalışma PDHG lezyonlarında önceki çalışmalarla ortaya konulan pro-inflamatuar sitokinlerin (IL-1, IL-6, TNF-α) benzer şekilde POF lezyonlarında da ekspresyonunu immunohistokimyasal olarak ortaya koymaktadır. Bu çalışmanın sonuçlarına göre proinflamatuar sitokinlerin POF lezyonlarında görüldüğü ve rol aldığı görülmektedir.

Sonuç olarak proinflamatuar sitokinler IL-1, IL-6, IL-17 ve TNF-α çenelerdeki PDHG ve POF lezyonlarının büyümeyi proçesi ile ilişkilidir. PDHG ve POF lezyonlarının gelişiminde bu sitokinlerin fonksiyonel rolünü açıklamak, gelecekte bu lezyonların medikal tedavisi için stratejiler geliştirilmesine imkan sağlayabilecektir. Dolayısıyla bu çalışmanın bulgularının PDHG ve POF lezyonlarının etyopatogenezini açıklamak, gelişiminde bu sitokinlerin fonksiyonel rolünü açıklamak, gelecekte bu lezyonların medikal tedavisi için stratejiler geliştirilmesine imkan sağlayabilecektir. Dolayısıyla bu çalışmanın bulgularının PDHG ve POF lezyonlarının etyopatogenezini açıklamak, geliştirilmiş ve kullanılması PDHG ve POF gibi reaktif lezyonların gelişimini ve büyümelerini engelleyebilir. Bunun için çenelerde görülen PDHG ve POF lezyonlarında inflamatuar sitokinlerin varlığını, rolünü ve etki mekanizmalarını açıklayacak nitelikte daha çok sayıda araştırmaya ihtiyaç vardır.
KAYNAKLAR

16. Duarte PM, da Rocha M, Sampaio E, Mestnik MJ, Feres M, Figueiredo LC, Bastos MF, Faveri M. Serum levels of cytokines in subjects with generalized chronic and

25. Günhan Ö. Oral ve Maksillofasiyal Patoloji, 1. baskı, İstanbul, Quintessence Yayıncılık; 2015. p.120-1.

72. Yap SH, Moshage HJ, Hazenberg BP, Roelofs HM, Bijzet J, Limburg PC. Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes. Biochim Biophys Acta 1991;1091(3):405-8.

77. Kawashiri SY, Kawakami A, Iwamoto N, Fujikawa K, Aramaki T, Tamai M. Proinflammatory cytokines synergistically enhance the production of chemokine ligand 20 (CCL20) from rheumatoid fibroblast-like synovial cells in vitro and serum CCL20 is...

81. Suzuki M, Hashizume M, Yoshida H, Shiina M, Mihara M. IL-6 and IL-1 synergistically enhanced the production of MMPs from synovial cells by up-regulating IL-6 production and IL-1 receptor I expression. Cytokine 2010;51(2):178-83.

153. Dereci Ö. Ağızda görülen dev hücreli granülomaların patogenezinde nükleer faktör kappa beta sinyal yolağının aktivitesinin araştırılması. Sağlık Bilimleri Enstitüsü,

176. van den Berg WB, McInnes IB. Th17 cells and IL-17a focus on immunopathogenesis and immunotherapeutics. Semin Arthritis Rheum 2013;43(2):158-70.
EKLER

EK-1. ÖZGEÇMİŞ

Dt. Ömer EKİCİ

EK-2. ETİK KURUL ONAY FORMU

Sayın, Prof. Dr. Sinan AY
Eskişehir Osmangazi Üniversitesi Dış Hekimlik Fakültesi
Ağız, Dış ve Çene Cerrahisi Anabilim Dalı

Taraflardan yürüttülmekte olan “Çenelerde görülen periferal dev granüломalar ile periferal ossify fibromalar stromal inflammatur expresyonlarının immünohistokimyasal olarak değerlendirilmesi” başlık hakkında alınan karar ilşikte gönderilmiştir.

Bilgileriniizi ve gereğini Size ile rica ederim.

Prof. Dr. Selma METİN Taş
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Halk Sağlığı Anabilim Dalı

Prof. Dr. Yavuzer ARGÜN
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Tehil Bilgilendirme ve Araştırma Anabilim Dalı

Prof. Dr. Öznur ALATAS
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Tehil Bilgilendirme Anabilim Dalı

Prof. Dr. Çelebi CERİN
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Hastalık Bilgisi Programı ve Nacional Cerrahi Anabilim Dalı

Prof. Dr. Öznur BÖR
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Gündoğdu ve Hastalık Bilgisi Anabilim Dalı

Prof. Dr. Nihat İRKAŞAP
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Fizyoloji Anabilim Dalı

Prof. Dr. Bilgeet GÖRENEK
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Kardiyoloji Anabilim Dalı

Prof. Dr. Birgül YELEK
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Anestezioloji ve Reanimasyon Anabilim Dalı

Drs. Dr. Ercan MUMCU
Eskişehir Osmangazi Üniversitesi Dış Hekimliği Fakültesi

Ved.Drs. Dr. Nazemir ÖZELKASı
BOYDAG

Avrasya Üniversitesi

Hukuk Fakültesi

Dr. Ercel Gökmen YAŞ GÜZEY
Eskişehir Osmangazi Üniversitesi Tıp Fakültesi
Sağlık, Uyg. ve Arş Hiz. Eracılık

Beyazıt'ta Mustafa TEZEL

TULOMOŞ Genel Mütşebiğe

Vedal Cemil ÜLUDAG

Eskişehir Yasaşte

Yurt İdare bigotry

Müşteri Yardımcısı
ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ TİP FAKÜLTESİ
KLİNİK ARASTIRMALAR ETİK KURULU BAŞKANLIĞI

GÖRÜŞ FORMU

“Çañelerde görülen periferal dev hücreli granülomlar ile periferal ossifüyasyon fibromaların stromal inflamatuar sitokin expresyonlarının immunohistokimyasal olarak değerlendirilmesi” başlıklı proje ile ilgili etik kurulumuuzun görüşü aşağıdaki.

Araştırma Projesinin Yürütücüleri: Eskişehir Osmangazi Üniversitesi Diş Hekimliği Fakültesi Ağız, Diş ve Çene Cerrahisi Anabilim Dalı – Araş Gör. Dr. Ömer EKICI (Tez Sahibi)
Danışman: Eskişehir Osmangazi Üniversitesi Diş Hekimliği Fakültesi Ağız, Diş ve Çene Cerrahisi Anabilim Dalı – Prof. Dr. Sinan AY (Tez Danışmanı)
Diğer Çalışmacılar: Eskişehir Osmangazi Üniversitesi Tip Fakültesi Tibbi Patoloji Anabilim Dalı – Prof. Dr. Mustafa Fuat AÇIKALIN, Prof. Dr. Özgül PAŞAOĞLU

17 Mart 2015 tarihli Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Klinik Araştırmalar Etik Kurulu Görüşü:

Çalışmanın uygulara göre düzenlendikten sonra, başvuru formularında gerekli görüş düzeltilmeler yapılıp yerinden başvurulması gerekmiştir.

Arş. Gör. Ömer EKICI'nin 05.05.2015 tarihli yazısı
Kuruluzunuz 03.04.2015 tarih ve 145 sayılı alınmış olduğu etik kurul kararına ilişkin gerekli düzenlemeler yapmış olup formlar dilekçe ekinde sunulmuştur.
<table>
<thead>
<tr>
<th>Karar Tarihi: 28 Mayıs 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karar Sayısı: 08</td>
</tr>
</tbody>
</table>

Eskişehir Osmangazi Üniversitesi Diş Hekimliği Fakültesi Ağz, Diş ve Çene Cerrahisi Anabilim Dalı Prof. Dr. Sinan AY (Tez Danışmanı) ve Araş. Gör. Dr. Ömer Ekici (Tez Sahibi) tarafından yürütülen “Çenelerde görülen periferal dev hücreli granülomalar ile periferal ossifiye fibromaların stromal inflamatuar sítokin expresyonlarının immünohistokimyasal olarak değerlendirilmesi” başlıklı çalışmanın gốci ve öneriler doğrultusunda yapılması uygun olduğuna oy birliğiyle karar verilmiştir. Çalışmanızda başarılardır dileriz.

ASLI GİBİDIR
KLİNİK ARAŞTIRMALAR ETİK KURULU KARAR FORMU

<table>
<thead>
<tr>
<th>ARAŞTIRMANIN AÇIK ADI</th>
<th>Çeşitlenen periferal dev hücreli granülosit periferal ossifisye fibromaların stromal inflamatuar s expraysyonlarının immunohistolikograflasal değerlendirilmesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>YARSA ARAŞTIRMANIN PROTOKOL KODU</td>
<td></td>
</tr>
<tr>
<td>Prof.Dr. Özcan BÖR</td>
<td>Çocuk Sağ. Ve Hast. Eskişehir Osmangazi Univ. Top Fakültesi Çocuk Sağlık ve Hastalıkları Anabilim Dalı</td>
</tr>
<tr>
<td>Prof.Dr. Hürşer ERKASAP</td>
<td>Fizyoloji Eskişehir Osmangazi Univ. Top Fakültesi Fizyoloji Anabilim Dalı</td>
</tr>
<tr>
<td>Prof.Dr. İhsan GÖRÜNEK</td>
<td>Kardioloji Eskişehir Osmangazi Univ. Top Fakültesi Kardioloji Anabilim Dalı</td>
</tr>
<tr>
<td>Prof.Dr. Börullah VELKEM</td>
<td>Anestezioloji ve Reanimasyon Eskişehir Osmangazi Univ. Top Fakültesi Anestezioloji ve Rean. Anabilim Dalı</td>
</tr>
<tr>
<td>Doç.Dr. Enes MÜMCU</td>
<td>Dış Hekimliği Eskişehir Osmangazi Univ. Dış Hekimliği Fakültesi Proktokol Byelik Anabilim Dalı</td>
</tr>
<tr>
<td>Yrd. Doç. Dr. Numune ÖZENBAŞ KOSMÖ</td>
<td>Hukuk Ankara Üniversitesi Hukuk Fakültesi</td>
</tr>
<tr>
<td>Dr. Ezgi Gözçen YAZİYEY</td>
<td>Farmakoloji Eskişehir Osmangazi Univ. Top Fakültesi Sağlık, Uyg. ve Arş Hst. Eczanesi</td>
</tr>
<tr>
<td>Başmüftü Mustafa TEZEL</td>
<td>Maliye TÜLÜMBAŞ Genel Müdürliği</td>
</tr>
<tr>
<td>Müftü Yard. Vural ÜNİ SÜUDAŞ</td>
<td>İştenme KYK Eskişehir Yurdu</td>
</tr>
</tbody>
</table>

Toplantıda Bulunan